Strong correlations and orbital texture in single-layer 1T-TaSe2

[1]  A. Neto,et al.  Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor , 2019, Science Advances.

[2]  Sung-Hoon Lee,et al.  Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1T-TaS_{2}. , 2019, Physical review letters.

[3]  Kenji Watanabe,et al.  Signatures of tunable superconductivity in a trilayer graphene moiré superlattice , 2019, Nature.

[4]  H. Berger,et al.  Stacking-driven gap formation in layered 1 T - TaS2 , 2018, Physical Review B.

[5]  Takashi Takahashi,et al.  Selective Fabrication of Mott-Insulating and Metallic Monolayer TaSe2 , 2018 .

[6]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[7]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[8]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[9]  Juan Jiang,et al.  Persistent Charge-Density-Wave Order in Single-Layer TaSe2. , 2018, Nano letters.

[10]  Zheng Liu,et al.  Mottness Collapse in 1 T − TaS 2 − x Se x Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals , 2017 .

[11]  B. Keimer,et al.  The physics of quantum materials , 2017, Nature Physics.

[12]  Hai-Qing Lin,et al.  Electronic correlation effects and orbital density wave in the layered compound 1 T -TaS 2 , 2017 .

[13]  D. Graf,et al.  Dynamic band-structure tuning of graphene moiré superlattices with pressure , 2017, Nature.

[14]  S. Kravchenko Strongly Correlated Electrons in Two Dimensions , 2017 .

[15]  I. Hamada,et al.  Implementation and Validation of Fully Relativistic GW Calculations: Spin-Orbit Coupling in Molecules, Nanocrystals, and Solids. , 2016, Journal of chemical theory and computation.

[16]  B. Hammer,et al.  Crystalline and electronic structure of single-layer TaS 2 , 2016, 1606.05856.

[17]  S. Louie,et al.  Screening and many-body effects in two-dimensional crystals: Monolayer MoS 2 , 2016, 1605.08733.

[18]  Yuanbo Zhang,et al.  A metallic mosaic phase and the origin of Mott-insulating state in 1T-TaS2 , 2015, Nature Communications.

[19]  B. N. Narozhny,et al.  Coulomb drag , 2015, 1505.07468.

[20]  Sang-Wook Cheong,et al.  Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2 , 2015, Nature Communications.

[21]  Francois Gygi,et al.  Optimization algorithm for the generation of ONCV pseudopotentials , 2015, Comput. Phys. Commun..

[22]  K. Rossnagel,et al.  How fast can a Peierls-Mott insulator be melted? , 2014, Faraday discussions.

[23]  K. Koepernik,et al.  Orbital textures and charge density waves in transition metal dichalcogenides , 2014, Nature Physics.

[24]  Stepan S. Tsirkin,et al.  Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator , 2014, 1409.5343.

[25]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[26]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[27]  Jonas Björk,et al.  Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene : Retaining an effective primitive cell band structure by band unfolding , 2014 .

[28]  A. Millis,et al.  Three-dimensional metallic and two-dimensional insulating behavior in octahedral tantalum dichalcogenides , 2014, 1401.0246.

[29]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[30]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  L. Forró,et al.  From Mott state to superconductivity in 1T-TaS2. , 2008, Nature materials.

[32]  S. Colonna,et al.  Mott phase at the surface of 1T-TaSe2 observed by scanning tunneling microscopy. , 2005, Physical review letters.

[33]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[34]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[35]  A. Georges,et al.  Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2. , 2002, Physical review letters.

[36]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[39]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[40]  E. Tosatti,et al.  Electrical, structural and magnetic properties of pure and doped 1T-TaS2 , 1979 .

[41]  E. Tosatti,et al.  ON THE NATURE OF THE LOW-TEMPERATURE PHASE OF 1T-TaS2 , 1976 .

[42]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[43]  Bertrand I. Halperin,et al.  Possible Anomalies at a Semimetal-Semiconductor Transistion , 1968 .

[44]  S. Moser An experimentalist's guide to the matrix element in angle resolved photoemission , 2017 .

[45]  F. Jellinek,et al.  The low-temperature superstructures of 1T-TaSe2 and 2H-TaSe2 , 1980 .