Accelerated versus standard corneal collagen cross-linking in pediatric keratoconus patients: 24 months follow-up results.

[1]  Jiwon Kim,et al.  Comparison of the Conventional Dresden Protocol and Accelerated Protocol With Higher Ultraviolet Intensity in Corneal Collagen Cross-Linking for Keratoconus , 2017, Cornea.

[2]  G. Zararsiz,et al.  Accelerated Corneal Crosslinking for Treatment of Progressive Keratoconus in Pediatric Patients , 2017, European journal of ophthalmology.

[3]  A. Badawi Accelerated corneal collagen cross-linking in pediatric keratoconus: One year study , 2017, Saudi journal of ophthalmology : official journal of the Saudi Ophthalmological Society.

[4]  N. Çağıl,et al.  Factors Influencing Progression of Keratoconus 2 Years After Corneal Collagen Cross-Linking in Pediatric Patients , 2016, Cornea.

[5]  R. Wisse,et al.  Corneal Cross-Linking for Pediatric Keratoconus: Long-Term Results , 2016, Cornea.

[6]  A. C. Cheng,et al.  Conventional versus accelerated corneal collagen cross‐linking in the treatment of keratoconus , 2016, Clinical & experimental ophthalmology.

[7]  F. Hafezi,et al.  Long-term Results of an Accelerated Corneal Cross-linking Protocol (18 mW/cm2) for the Treatment of Progressive Keratoconus. , 2015, American journal of ophthalmology.

[8]  V. Jhanji,et al.  One-year outcomes of conventional and accelerated collagen crosslinking in progressive keratoconus , 2015, Scientific Reports.

[9]  C. Jayadev,et al.  Current Protocols of Corneal Collagen Cross-Linking: Visual, Refractive, and Tomographic Outcomes. , 2015, American journal of ophthalmology.

[10]  F. Raiskup,et al.  Corneal collagen crosslinking with riboflavin and ultraviolet‐A light in progressive keratoconus: Ten‐year results , 2015, Journal of cataract and refractive surgery.

[11]  A. Demirok,et al.  Accelerated corneal cross-linking in pediatric patients with keratoconus: 24-month outcomes. , 2014, Journal of refractive surgery.

[12]  C. Jayadev,et al.  Accelerated Corneal Collagen Cross-Linking in Pediatric Patients: Two-Year Follow-Up Results , 2014, BioMed research international.

[13]  Yasin Cinar,et al.  Comparison of accelerated and conventional corneal collagen cross-linking for progressive keratoconus , 2014, Cutaneous and ocular toxicology.

[14]  Tukezban Huseynova,et al.  Accelerated versus conventional corneal collagen crosslinking , 2014, Journal of cataract and refractive surgery.

[15]  F. Hafezi,et al.  Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. , 2014, Investigative ophthalmology & visual science.

[16]  G. Snibson,et al.  A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. , 2014, Ophthalmology.

[17]  F. Hafezi,et al.  Safety profile of high-fluence corneal collagen cross-linking for progressive keratoconus: preliminary results from a prospective cohort study. , 2013, Journal of refractive surgery.

[18]  Sundaram Natarajan,et al.  Keratoconus , 2013, Indian journal of ophthalmology.

[19]  S. Greenstein,et al.  Characteristics influencing outcomes of corneal collagen crosslinking for keratoconus and ectasia: Implications for patient selection , 2013, Journal of cataract and refractive surgery.

[20]  F. Hafezi,et al.  Progression of keratoconus and efficacy of pediatric [corrected] corneal collagen cross-linking in children and adolescents. , 2012, Journal of refractive surgery.

[21]  P. Vinciguerra,et al.  Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. , 2012, American journal of ophthalmology.

[22]  J. Colin,et al.  Scalability and severity of keratoconus in children. , 2012, American journal of ophthalmology.

[23]  S. Dhawan,et al.  Complications of Corneal Collagen Cross-Linking , 2011, Journal of ophthalmology.

[24]  Michael Mrochen,et al.  Equivalence of biomechanical changes induced by rapid and standard corneal cross-linking, using riboflavin and ultraviolet radiation. , 2011, Investigative ophthalmology & visual science.

[25]  T. Seiler,et al.  Flattening of the cornea after collagen crosslinking for keratoconus , 2011, Journal of cataract and refractive surgery.

[26]  S. Greenstein,et al.  Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: One‐year results , 2011, Journal of cataract and refractive surgery.

[27]  Peter S. Hersh,et al.  Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: Scheimpflug and biomicroscopic analysis , 2010, Journal of cataract and refractive surgery.

[28]  C. Mazzotta,et al.  Stromal haze after combined riboflavin‐UVA corneal collagen cross‐linking in keratoconus: in vivo confocal microscopic evaluation , 2007, Clinical & experimental ophthalmology.

[29]  G. Wollensak,et al.  Crosslinking treatment of progressive keratoconus: new hope , 2006, Current opinion in ophthalmology.

[30]  H. Hönigsmann,et al.  UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. , 2005, Journal of photochemistry and photobiology. B, Biology.

[31]  R. Adelman,et al.  Risk factors for progression to penetrating keratoplasty in patients with keratoconus. , 2004, American journal of ophthalmology.

[32]  A. Fotouhi,et al.  Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy in high myopia: a prospective clinical study , 2004, BMC ophthalmology.

[33]  M. Chalita,et al.  Correlation of aberrations with visual symptoms using wavefront analysis in eyes after laser in situ keratomileusis. , 2003, Journal of refractive surgery.

[34]  T. Seiler,et al.  Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. , 2003, American journal of ophthalmology.

[35]  S. Tuft,et al.  Prognostic factors for the progression of keratoconus. , 1994, Ophthalmology.