Analytical Methods in Untargeted Metabolomics: State of the Art in 2015

Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile – the metabolome – has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance and mass spectrometry are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review, we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high-throughput biotechnologies is also reviewed.

[1]  Michael L. Raymer,et al.  Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data , 2011, Metabolomics.

[2]  Eiichiro Fukusaki,et al.  Current metabolomics: technological advances. , 2013, Journal of bioscience and bioengineering.

[3]  Xi-jun Wang,et al.  Modern analytical techniques in metabolomics analysis. , 2012, The Analyst.

[4]  B. McManus,et al.  The Human Serum Metabolome , 2011, PloS one.

[5]  Dietmar Schomburg,et al.  MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. , 2009, Analytical chemistry.

[6]  Heping Zhang,et al.  Why Do We Test Multiple Traits in Genetic Association Studies? , 2009, Journal of the Korean Statistical Society.

[7]  Benno Schwikowski,et al.  Graph-based methods for analysing networks in cell biology , 2006, Briefings Bioinform..

[8]  P. Callaghan Principles of Nuclear Magnetic Resonance Microscopy , 1991 .

[9]  Jochen Gaedcke,et al.  Integration of Metabolomics and Transcriptomics Revealed a Fatty Acid Network Exerting Growth Inhibitory Effects in Human Pancreatic Cancer , 2013, Clinical Cancer Research.

[10]  Marta Díaz,et al.  AStream: an R package for annotating LC/MS metabolomic data , 2011, Bioinform..

[11]  N. Baliga,et al.  metaXCMS: second-order analysis of untargeted metabolomics data. , 2011, Analytical chemistry.

[12]  E. K. Kemsley,et al.  Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods , 1996 .

[13]  Douglas B. Kell,et al.  Statistical strategies for avoiding false discoveries in metabolomics and related experiments , 2007, Metabolomics.

[14]  Chao Yang,et al.  Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis , 2009, BMC Bioinformatics.

[15]  Timothy M. D. Ebbels,et al.  Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA , 2011 .

[16]  P. O’Reilly,et al.  MultiPhen: Joint Model of Multiple Phenotypes Can Increase Discovery in GWAS , 2012, PloS one.

[17]  Manuel A. R. Ferreira,et al.  A multivariate test of association , 2009, Bioinform..

[18]  Age K. Smilde,et al.  Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies , 2011, Metabolomics.

[19]  Ralf Steuer,et al.  Review: On the analysis and interpretation of correlations in metabolomic data , 2006, Briefings Bioinform..

[20]  Nigel W. Hardy,et al.  The Metabolomics Standards Initiative , 2007, Nature Biotechnology.

[21]  L. Buydens,et al.  Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods. , 2010, Analytica chimica acta.

[22]  Yurii S. Aulchenko,et al.  Genome-Wide Association Study Identifies Novel Loci Associated with Circulating Phospho- and Sphingolipid Concentrations , 2012, PLoS genetics.

[23]  M. Hirai,et al.  MassBank: a public repository for sharing mass spectral data for life sciences. , 2010, Journal of mass spectrometry : JMS.

[24]  D G Robertson,et al.  Metabolomics in Drug Discovery and Development , 2013, Clinical pharmacology and therapeutics.

[25]  Xiuxia Du,et al.  Spectral Deconvolution for Gas Chromatography Mass Spectrometry-Based Metabolomics: Current Status and Future Perspectives , 2013, Computational and structural biotechnology journal.

[26]  Gordana Ivosev,et al.  Instrumental and experimental effects in LC-MS-based metabolomics. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[27]  Luigi Ferrucci,et al.  Genome-Wide Association Study of Plasma Polyunsaturated Fatty Acids in the InCHIANTI Study , 2009, PLoS genetics.

[28]  R. Weinshilboum,et al.  Metabolomics: a global biochemical approach to drug response and disease. , 2008, Annual review of pharmacology and toxicology.

[29]  Christoph Steinbeck,et al.  NMRShiftDB-Constructing a Free Chemical Information System with Open-Source Components , 2003, J. Chem. Inf. Comput. Sci..

[30]  Andreas Zell,et al.  Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. , 2013, Clinical chemistry.

[31]  Kieran J. Sharkey,et al.  A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions , 2013, BMC Systems Biology.

[32]  Jing Gao,et al.  Metscape: a Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks , 2010, Bioinform..

[33]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[34]  Christian Gieger,et al.  Genetics Meets Metabolomics: A Genome-Wide Association Study of Metabolite Profiles in Human Serum , 2008, PLoS genetics.

[35]  J. Markley,et al.  rNMR: open source software for identifying and quantifying metabolites in NMR spectra , 2009, Magnetic resonance in chemistry : MRC.

[36]  Yoav Benjamini,et al.  Identifying differentially expressed genes using false discovery rate controlling procedures , 2003, Bioinform..

[37]  Andrey A. Shabalin,et al.  Matrix eQTL: ultra fast eQTL analysis via large matrix operations , 2011, Bioinform..

[38]  Joshua D Rabinowitz,et al.  Metabolomic analysis and visualization engine for LC-MS data. , 2010, Analytical chemistry.

[39]  Paul B Watkins,et al.  Effects of a prolonged standardized diet on normalizing the human metabolome. , 2009, The American journal of clinical nutrition.

[40]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[41]  Joaquín Dopazo,et al.  Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data , 2010, Bioinform..

[42]  Maria De Iorio,et al.  Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN , 2014, Nature Protocols.

[43]  G. Siuzdak,et al.  Innovation: Metabolomics: the apogee of the omics trilogy , 2012, Nature Reviews Molecular Cell Biology.

[44]  M. McCarthy,et al.  Genome-wide association studies for complex traits: consensus, uncertainty and challenges , 2008, Nature Reviews Genetics.

[45]  Michael L. Raymer,et al.  Gaussian binning: a new kernel-based method for processing NMR spectroscopic data for metabolomics , 2008, Metabolomics.

[46]  Alvis Brazma,et al.  Minimum Information About a Microarray Experiment (MIAME) – Successes, Failures, Challenges , 2009, TheScientificWorldJournal.

[47]  C. Gieger,et al.  Human metabolic individuality in biomedical and pharmaceutical research , 2011, Nature.

[48]  John P. Wikswo,et al.  Phenotypic Mapping of Metabolic Profiles Using Self-Organizing Maps of High-Dimensional Mass Spectrometry Data , 2014, Analytical chemistry.

[49]  Tetsuya Sakurai,et al.  PRIMe: A Web Site That Assembles Tools for Metabolomics and Transcriptomics , 2008, Silico Biol..

[50]  Ming-Huei Chen,et al.  A genome-wide association study of the human metabolome in a community-based cohort. , 2013, Cell metabolism.

[51]  R. Goodacre,et al.  The role of metabolites and metabolomics in clinically applicable biomarkers of disease , 2010, Archives of Toxicology.

[52]  Bjoern H. Menze,et al.  A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data , 2009, BMC Bioinformatics.

[53]  Ming-Yang Kao,et al.  Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability , 2008, Algorithms for Molecular Biology.

[54]  Younghoon Kim,et al.  Multivariate classification of urine metabolome profiles for breast cancer diagnosis , 2009, BMC Bioinformatics.

[55]  David S. Wishart,et al.  Bioinformatics Applications Note Systems Biology Metpa: a Web-based Metabolomics Tool for Pathway Analysis and Visualization , 2022 .

[56]  Christian Gieger,et al.  A genome-wide association study of metabolic traits in human urine , 2011, Nature Genetics.

[57]  Sirish L. Shah,et al.  Analysis of metabolomic data using support vector machines. , 2008, Analytical chemistry.

[58]  Markus Perola,et al.  Genome-wide association study identifies multiple loci influencing human serum metabolite levels , 2012, Nature Genetics.

[59]  T. Ebbels,et al.  Recursive segment-wise peak alignment of biological (1)h NMR spectra for improved metabolic biomarker recovery. , 2009, Analytical chemistry.

[60]  Erin E. Carlson,et al.  Targeted profiling: quantitative analysis of 1H NMR metabolomics data. , 2006, Analytical chemistry.

[61]  Henri S. Tapp,et al.  Notes on the practical utility of OPLS , 2009 .

[62]  David S. Wishart,et al.  Quantitative metabolomics using NMR , 2008 .

[63]  Christian Baumgartner,et al.  Profiling the human response to physical exercise: a computational strategy for the identification and kinetic analysis of metabolic biomarkers , 2011, Journal of Clinical Bioinformatics.

[64]  Christoph Steinbeck,et al.  MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data , 2012, Nucleic Acids Res..

[65]  Rafael Brüschweiler,et al.  Customized Metabolomics Database for the Analysis of NMR 1H–1H TOCSY and 13C–1H HSQC-TOCSY Spectra of Complex Mixtures , 2014, Analytical chemistry.

[66]  Yan Ni,et al.  ADAP-GC 2.0: deconvolution of coeluting metabolites from GC/TOF-MS data for metabolomics studies. , 2012, Analytical chemistry.

[67]  Xiaoquan Qi,et al.  Plant metabolomics and metabolic biology. , 2014, Journal of integrative plant biology.

[68]  Johan Trygg,et al.  Chemometrics in metabolomics--a review in human disease diagnosis. , 2010, Analytica chimica acta.

[69]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[70]  Christoph Steinbeck,et al.  The role of reporting standards for metabolite annotation and identification in metabolomic studies , 2013, GigaScience.

[71]  J. Lindon,et al.  Scaling and normalization effects in NMR spectroscopic metabonomic data sets. , 2006, Analytical chemistry.

[72]  Serge Rezzi,et al.  Chemometric strategy for modeling metabolic biological space along the gastrointestinal tract and assessing microbial influences. , 2010, Analytical chemistry.

[73]  Timothy M. D. Ebbels,et al.  The evolution of partial least squares models and related chemometric approaches in metabonomics and metabolic phenotyping , 2010 .

[74]  Marc Chadeau-Hyam,et al.  Metabolic profiling and the metabolome-wide association study: significance level for biomarker identification. , 2010, Journal of proteome research.

[75]  D. Kell,et al.  Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery☆ , 2014, Drug discovery today.

[76]  Xiaorong Qin,et al.  An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization. , 2009, The Analyst.

[77]  Giovanni Scardoni,et al.  Metscape 2 bioinformatics tool for the analysis and visualization of metabolomics and gene expression data , 2012, Bioinform..

[78]  Joachim Selbig,et al.  The Golm Metabolome Database: a database for GC-MS based metabolite profiling , 2007 .

[79]  Rafael Brüschweiler,et al.  Web server based complex mixture analysis by NMR. , 2008, Analytical chemistry.

[80]  J. Banoub,et al.  Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers , 2009 .

[81]  Nigel W. Hardy,et al.  The metabolomics standards initiative (MSI) , 2007, Metabolomics.

[82]  H. Ressom,et al.  LC-MS-based metabolomics. , 2012, Molecular bioSystems.

[83]  Kathryn Roeder,et al.  Pleiotropy and principal components of heritability combine to increase power for association analysis , 2008, Genetic epidemiology.

[84]  Arjen Lommen,et al.  MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware , 2011, Metabolomics.

[85]  I. Wilson,et al.  Liquid chromatography and ultra-performance liquid chromatography-mass spectrometry fingerprinting of human urine: sample stability under different handling and storage conditions for metabonomics studies. , 2008, Journal of chromatography. A.

[86]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[87]  David S. Wishart,et al.  Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics , 2014, PloS one.

[88]  Matthew J. Brauer,et al.  Conservation of the metabolomic response to starvation across two divergent microbes , 2006, Proceedings of the National Academy of Sciences.

[89]  W. Dietrich,et al.  Fast and precise automatic baseline correction of one- and two-dimensional nmr spectra , 1991 .

[90]  F Savorani,et al.  icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. , 2010, Journal of magnetic resonance.

[91]  John M Baker,et al.  Recent applications of NMR spectroscopy in plant metabolomics , 2007, The FEBS journal.

[92]  M. Stephens A Unified Framework for Association Analysis with Multiple Related Phenotypes , 2013, PloS one.

[93]  Yutaka Yamada,et al.  PRIMe Update: Innovative Content for Plant Metabolomics and Integration of Gene Expression and Metabolite Accumulation , 2013, Plant & cell physiology.

[94]  F. Ausubel Metabolomics , 2012, Nature Biotechnology.

[95]  Age K. Smilde,et al.  Principal Component Analysis , 2003, Encyclopedia of Machine Learning.

[96]  Yizeng Liang,et al.  Comparisons of Five Algorithms for Chromatogram Alignment , 2013, Chromatographia.

[97]  Yi-Zeng Liang,et al.  Baseline correction using adaptive iteratively reweighted penalized least squares. , 2010, The Analyst.

[98]  John L Markley,et al.  Databases and Software for NMR-Based Metabolomics. , 2013, Current Metabolomics.

[99]  Rafael Brüschweiler,et al.  TOCCATA: a customized carbon total correlation spectroscopy NMR metabolomics database. , 2012, Analytical chemistry.

[100]  Christian Gieger,et al.  PSEA: Phenotype Set Enrichment Analysis—A New Method for Analysis of Multiple Phenotypes , 2012, Genetic epidemiology.

[101]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[102]  David S. Wishart,et al.  MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data , 2010, Nucleic Acids Res..

[103]  T. Sørlie,et al.  Merging transcriptomics and metabolomics - advances in breast cancer profiling , 2010, BMC Cancer.

[104]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[105]  Pan Du,et al.  Bioinformatics Original Paper Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-based Pattern Matching , 2022 .

[106]  M. Viant,et al.  Analysis of time course 1H NMR metabolomics data by multivariate curve resolution , 2009, Magnetic resonance in chemistry : MRC.

[107]  Paul E. Anderson,et al.  Orthogonal Projections to Latent Structures , 2015 .

[108]  Fabian J. Theis,et al.  Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data , 2011, BMC Systems Biology.

[109]  Peter Kraft,et al.  Reproducibility of metabolomic profiles among men and women in 2 large cohort studies. , 2013, Clinical chemistry.

[110]  Sin-Ho Jung,et al.  Sample size for FDR-control in microarray data analysis , 2005, Bioinform..

[111]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[112]  M. Orešič,et al.  Metabolomics, a novel tool for studies of nutrition, metabolism and lipid dysfunction. , 2009, Nutrition, metabolism, and cardiovascular diseases : NMCD.

[113]  Matthias Klapperstück,et al.  VANTED v2: a framework for systems biology applications , 2012, BMC Systems Biology.

[114]  Steffen Neumann,et al.  Highly sensitive feature detection for high resolution LC/MS , 2008, BMC Bioinformatics.

[115]  Weihuan Niu,et al.  Comparative evaluation of eight software programs for alignment of gas chromatography-mass spectrometry chromatograms in metabolomics experiments. , 2014, Journal of chromatography. A.

[116]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[117]  Elena Tsiporkova,et al.  NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. , 2008, Analytical chemistry.

[118]  Zerihun T. Dame,et al.  The Human Urine Metabolome , 2013, PloS one.

[119]  H. Cartwright,et al.  Application of fast Fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets. , 2005, Analytical chemistry.

[120]  Chris T. A. Evelo,et al.  WikiPathways: building research communities on biological pathways , 2011, Nucleic Acids Res..

[121]  David L. Woodruff,et al.  Beam search for peak alignment of NMR signals , 2004 .

[122]  David S. Wishart,et al.  MetaboMiner – semi-automated identification of metabolites from 2D NMR spectra of complex biofluids , 2008, BMC Bioinformatics.

[123]  David W. Russell,et al.  LMSD: LIPID MAPS structure database , 2006, Nucleic Acids Res..

[124]  Wei Pan,et al.  Gene expression A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data , 2005 .

[125]  Cheng Zheng,et al.  Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection , 2011, Bioinform..

[126]  N. Reo NMR-BASED METABOLOMICS , 2002, Drug and chemical toxicology.

[127]  David M. Rocke,et al.  Baseline Correction for NMR Spectroscopic Metabolomics Data Analysis , 2008, BMC Bioinformatics.

[128]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[129]  Raghuraj Rao,et al.  MetDAT: a modular and workflow-based free online pipeline for mass spectrometry data processing, analysis and interpretation , 2010, Bioinform..

[130]  Christa Kühn Metabolomics in Animal Breeding , 2012 .

[131]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[132]  P. Eilers Parametric time warping. , 2004, Analytical chemistry.

[133]  Samuel Kaski,et al.  Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..

[134]  P. Mendes,et al.  The origin of correlations in metabolomics data , 2005, Metabolomics.

[135]  Sebastiano Collino,et al.  Multivariate modeling strategy for intercompartmental analysis of tissue and plasma 1H NMR spectrotypes. , 2009, Journal of proteome research.

[136]  Serge Rezzi,et al.  Alignment using variable penalty dynamic time warping. , 2009, Analytical chemistry.

[137]  Peter Donnelly,et al.  A Genome-Wide Metabolic QTL Analysis in Europeans Implicates Two Loci Shaped by Recent Positive Selection , 2011, PLoS genetics.

[138]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[139]  John T. Wei,et al.  Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression , 2009, Nature.

[140]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[141]  Dennis B. Troup,et al.  NCBI GEO: archive for functional genomics data sets—10 years on , 2010, Nucleic Acids Res..

[142]  J. Griffin,et al.  An introduction to biological nuclear magnetic resonance spectroscopy , 2011, Biological reviews of the Cambridge Philosophical Society.

[143]  Tao Wang,et al.  Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis , 2009, BMC Bioinformatics.

[144]  P deTullio Metabolomics in drug discovery. , 2015 .

[145]  Yufeng J. Tseng,et al.  3Omics: a web-based systems biology tool for analysis, integration and visualization of human transcriptomic, proteomic and metabolomic data , 2013, BMC Systems Biology.

[146]  Christoph Steinbeck,et al.  The MetaboLights repository: curation challenges in metabolomics , 2013, Database J. Biol. Databases Curation.

[147]  S. Neumann,et al.  CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. , 2012, Analytical chemistry.

[148]  Jürgen Kurths,et al.  Observing and Interpreting Correlations in Metabolic Networks , 2003, Bioinform..

[149]  S. Wold,et al.  Orthogonal projections to latent structures (O‐PLS) , 2002 .

[150]  J. Suykens,et al.  A tutorial on support vector machine-based methods for classification problems in chemometrics. , 2010, Analytica chimica acta.

[151]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[152]  M. Rantalainen,et al.  OPLS discriminant analysis: combining the strengths of PLS‐DA and SIMCA classification , 2006 .

[153]  Miron Livny,et al.  BioMagResBank , 2007, Nucleic Acids Res..

[154]  Bernhard Blümich P. T. Callaghan. Principles of nuclear magnetic resonance microscopy. Oxford University Press, Oxford, 1993, 492 pp, £25. ISBN 0 198 53997 5 , 1995 .

[155]  Arnald Alonso,et al.  Metabolomics in rheumatic diseases , 2014 .

[156]  A. Harvey Millar,et al.  The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets , 2010, BMC Bioinformatics.

[157]  Christian Gieger,et al.  Meta-Analysis of 28,141 Individuals Identifies Common Variants within Five New Loci That Influence Uric Acid Concentrations , 2009, PLoS genetics.

[158]  Dominique Marion,et al.  An Introduction to Biological NMR Spectroscopy* , 2013, Molecular & Cellular Proteomics.

[159]  David S Wishart,et al.  Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra , 2011, Journal of Biomolecular NMR.

[160]  Daniel Jacob,et al.  An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data , 2013, Analytical and Bioanalytical Chemistry.

[161]  D. Wishart,et al.  The human cerebrospinal fluid metabolome. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[162]  Alexandre Perera-Lluna,et al.  An R package to analyse LC/MS metabolomic data: MAIT (Metabolite Automatic Identification Toolkit) , 2014, Bioinform..

[163]  K. Laukens,et al.  Getting Your Peaks in Line: A Review of Alignment Methods for NMR Spectral Data , 2013, Metabolites.

[164]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[165]  Burkhard Morgenstern,et al.  Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps , 2008, Algorithms for Molecular Biology.

[166]  R. Spang,et al.  State-of-the art data normalization methods improve NMR-based metabolomic analysis , 2011, Metabolomics.

[167]  Aoife O'Gorman,et al.  Metabolomics as a tool in nutritional research , 2015, Current opinion in lipidology.

[168]  Xavier Robin,et al.  pROC: an open-source package for R and S+ to analyze and compare ROC curves , 2011, BMC Bioinformatics.

[169]  David S. Wishart,et al.  HMDB 3.0—The Human Metabolome Database in 2013 , 2012, Nucleic Acids Res..

[170]  E. J. van den Oord,et al.  Controlling false discoveries in genetic studies , 2008, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[171]  Maria De Iorio,et al.  BATMAN - an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model , 2012, Bioinform..

[172]  Christian Ludwig,et al.  MetaboLab - advanced NMR data processing and analysis for metabolomics , 2011, BMC Bioinformatics.

[173]  Ralf Tautenhahn,et al.  An accelerated workflow for untargeted metabolomics using the METLIN database , 2012, Nature Biotechnology.

[174]  Hugo Y. K. Lam,et al.  Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes , 2012, Cell.

[175]  David S. Wishart,et al.  SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database , 2013, Nucleic Acids Res..

[176]  Urs A Meyer,et al.  Omics and drug response. , 2013, Annual review of pharmacology and toxicology.

[177]  Theodoros N. Arvanitis,et al.  Birmingham Metabolite Library: a publicly accessible database of 1-D 1H and 2-D 1H J-resolved NMR spectra of authentic metabolite standards (BML-NMR) , 2011, Metabolomics.

[178]  Romà Tauler,et al.  Comparison of different multiway methods for the analysis of geographical metal distributions in fish, sediments and river waters in Catalonia , 2007 .

[179]  Heping Zhang,et al.  Rejoinder: Why Do We Test Multiple Traits in Genetic Association Studies? , 2009, Journal of the Korean Statistical Society.

[180]  K. Kaski,et al.  1H NMR metabonomics approach to the disease continuum of diabetic complications and premature death , 2008, Molecular systems biology.

[181]  C. Barbas,et al.  Metabolomics in cancer biomarker discovery: current trends and future perspectives. , 2014, Journal of pharmaceutical and biomedical analysis.

[182]  Ulrich Mansmann,et al.  GlobalANCOVA: exploration and assessment of gene group effects , 2008, Bioinform..

[183]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[184]  Christian Gieger,et al.  Epigenetics meets metabolomics: an epigenome-wide association study with blood serum metabolic traits , 2013, Human molecular genetics.

[185]  D. Wishart,et al.  Translational biomarker discovery in clinical metabolomics: an introductory tutorial , 2012, Metabolomics.

[186]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[187]  Susanna-Assunta Sansone,et al.  A Special Issue on Data Standards , 2006 .

[188]  I. Wilson,et al.  Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. , 2011, Mass spectrometry reviews.

[189]  Dan C. Tulpan,et al.  MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures , 2011, BMC Bioinformatics.

[190]  Atsushi Fukushima,et al.  Recent Progress in the Development of Metabolome Databases for Plant Systems Biology , 2013, Front. Plant Sci..

[191]  R. Abagyan,et al.  XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. , 2006, Analytical chemistry.

[192]  William J. Astle,et al.  A Bayesian Model of NMR Spectra for the Deconvolution and Quantification of Metabolites in Complex Biological Mixtures , 2011, 1105.2204.

[193]  Christoph Steinbeck,et al.  MetaboLights: towards a new COSMOS of metabolomics data management , 2012, Metabolomics.

[194]  Thomas Meitinger,et al.  Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations , 2009, PLoS genetics.

[195]  Taru Tukiainen,et al.  A Differential Network Approach to Exploring Differences between Biological States: An Application to Prediabetes , 2011, PloS one.

[196]  Age K. Smilde,et al.  UvA-DARE ( Digital Academic Repository ) Assessment of PLSDA cross validation , 2008 .

[197]  I. Schuppe-Koistinen,et al.  Peak alignment of NMR signals by means of a genetic algorithm , 2003 .

[198]  Christian Baumgartner,et al.  A network-based feature selection approach to identify metabolic signatures in disease. , 2012, Journal of theoretical biology.

[199]  Robert S Plumb,et al.  Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. , 2014, Journal of pharmaceutical and biomedical analysis.

[200]  Niku Oksala,et al.  Novel Loci for Metabolic Networks and Multi-Tissue Expression Studies Reveal Genes for Atherosclerosis , 2012, PLoS genetics.

[201]  Jordi Duran,et al.  A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data , 2012, Metabolites.

[202]  Mattias Rantalainen,et al.  Integration of transcriptomics and metabonomics: improving diagnostics, biomarker identification and phenotyping in ulcerative colitis , 2013, Metabolomics.

[203]  L. Kiemeney,et al.  A Comparison of Multivariate Genome-Wide Association Methods , 2014, PloS one.

[204]  S. Stein An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data , 1999 .

[205]  Michael P. Barrett,et al.  MetExplore: a web server to link metabolomic experiments and genome-scale metabolic networks , 2010, Nucleic Acids Res..

[206]  Christian Gieger,et al.  Mining the Unknown: A Systems Approach to Metabolite Identification Combining Genetic and Metabolic Information , 2012, PLoS genetics.

[207]  Rafael Brüschweiler,et al.  Unified and Isomer-Specific NMR Metabolomics Database for the Accurate Analysis of 13C–1H HSQC Spectra , 2014, ACS chemical biology.

[208]  M Daszykowski,et al.  A comparison of three algorithms for chromatograms alignment. , 2006, Journal of chromatography. A.

[209]  J. Nicholson,et al.  Host-Gut Microbiota Metabolic Interactions , 2012, Science.

[210]  Ralf Herwig,et al.  Primary Differentiation in the Human Blastocyst: Comparative Molecular Portraits of Inner Cell Mass and Trophectoderm Cells , 2005, Stem cells.

[211]  Seung Y. Rhee,et al.  Genomic Signatures of Specialized Metabolism in Plants , 2014, Science.

[212]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[213]  A. Astrup,et al.  Standardization of factors that influence human urine metabolomics , 2011, Metabolomics.

[214]  R. Gerszten,et al.  Targeted Metabolomics , 2012, Current protocols in molecular biology.

[215]  Bart Goethals,et al.  An integrated workflow for robust alignment and simplified quantitative analysis of NMR spectrometry data , 2011, BMC Bioinformatics.

[216]  David S. Wishart,et al.  MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis , 2012, Nucleic Acids Res..

[217]  D B Allison,et al.  Multiple phenotype modeling in gene-mapping studies of quantitative traits: power advantages. , 1998, American journal of human genetics.

[218]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[219]  Xavier Correig,et al.  Focus: a robust workflow for one-dimensional NMR spectral analysis. , 2014, Analytical chemistry.

[220]  Claus A. Andersson,et al.  Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data , 2004 .

[221]  Nicola Zamboni,et al.  High-throughput discovery metabolomics. , 2015, Current opinion in biotechnology.

[222]  Márcia M. C. Ferreira,et al.  Optimized bucketing for NMR spectra: Three case studies , 2013 .

[223]  John L Markley,et al.  Metabolite identification via the Madison Metabolomics Consortium Database , 2008, Nature Biotechnology.

[224]  John L. Markley,et al.  Deconvolution of Two-Dimensional NMR Spectra by Fast Maximum Likelihood Reconstruction: Application to Quantitative Metabolomics , 2011, Analytical chemistry.

[225]  Christian Gieger,et al.  A genome-wide perspective of genetic variation in human metabolism , 2010, Nature Genetics.

[226]  G. Siuzdak,et al.  XCMS Online: a web-based platform to process untargeted metabolomic data. , 2012, Analytical chemistry.

[227]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[228]  Dimitrios Spiliotopoulos,et al.  muma, An R Package for Metabolomics Univariate and Multivariate Statistical Analysis , 2013 .

[229]  Atefeh Rafiei,et al.  Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. , 2015, Rapid communications in mass spectrometry : RCM.

[230]  John P. Overington,et al.  An atlas of genetic influences on human blood metabolites , 2014, Nature Genetics.