Off-line compensation of the tool path deviations on robotic machining: Application to incremental sheet forming

In this paper, a coupling methodology is involved and improved to correct the tool path deviations induced by the compliance of industrial robots during an incremental sheet forming task. For that purpose, a robust and systematic method is first proposed to derive the elastic model of their structure and an efficient FE simulation of the process is then used to predict accurately the forming forces. Their values are then defined as the inputs of the proposed elastic model to calculate the robot TCP pose errors induced by the elastic deformations. This avoids thus a first step of measurement of the forces required to form a test part with a stiff machine. An intensive experimental investigation is performed by forming a classical frustum cone and a non-symmetrical twisted pyramid. It validates the robustness of both the FE analysis and the proposed elastic modeling allowing the final geometry of the formed parts to converge towards their nominal specifications in a context of prototyping applications.

[1]  Clément Gosselin,et al.  Parametric Stiffness Analysis of the Orthoglide , 2004, ArXiv.

[2]  Petar V. Kokotovic,et al.  An integral manifold approach to the feedback control of flexible joint robots , 1987, IEEE J. Robotics Autom..

[3]  Claude Perron,et al.  Simulation of friction stir welding using industrial robots , 2010, Ind. Robot.

[4]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Horst Meier,et al.  Increasing the part accuracy in dieless robot-based incremental sheet metal forming , 2009 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Claude Perron,et al.  New formulation for an industrial robot force controller: Real-time implementation on a KUKA robot , 2007, 2007 IEEE International Conference on Systems, Man and Cybernetics.

[8]  Paul Vanherck,et al.  Experimental study on force measurements for single point incremental forming , 2007 .

[9]  A. H. van den Boogaard,et al.  An overview of stabilizing deformation mechanisms in incremental sheet forming , 2009 .

[10]  Takashi Suehiro,et al.  Stiffness Analysis and Design of a Compact Modified Delta Parallel Mechanism , 2004, Robotica.

[11]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[12]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[13]  Philip Eyckens,et al.  MK modelling of sheet formability in the incremental sheet forming process, taking into account through-thickness shear , 2009 .

[14]  Gaël Écorchard,et al.  Elasto-geometrical modeling and calibration of redundantly actuated PKMs , 2010 .

[15]  C. Henrard,et al.  Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity , 2011 .

[16]  Patrick Maurine,et al.  Elasto-geometrical modelling of closed-loop industrial robots used for machining applications , 2008, 2008 IEEE International Conference on Robotics and Automation.

[17]  Jean-Luc Caenen,et al.  Identification of geometric and nongeometric parameters of robots , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[18]  Joost Duflou,et al.  Asymmetric single point incremental forming of sheet metal , 2005 .

[19]  J F Imbert,et al.  ANALYSE DES STRUCTURES PAR ELEMENTS FINIS , 1979 .

[20]  Jun Gu,et al.  Development of an inverse method for identification of materials parameters in the single point incremental sheet forming process , 2007 .

[21]  Carlos Canudas de Wit,et al.  Theory of Robot Control , 1996 .

[22]  Samad Hayati,et al.  Robot arm geometric link parameter estimation , 1983, The 22nd IEEE Conference on Decision and Control.

[23]  Wisama Khalil,et al.  Modeling of mechanical systems with lumped elasticity , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[24]  Dominique Deblaise,et al.  A systematic analytical method for PKM stiffness matrix calculation , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[25]  HenrardC.,et al.  Forming forces in single point incremental forming , 2011 .

[26]  Horst Meier,et al.  A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming , 2011 .

[27]  Stéphane Caro,et al.  Joint stiffness identification of six-revolute industrial serial robots , 2011 .

[28]  Eric Courteille,et al.  Design optimization of a Delta-like parallel robot through global stiffness performance evaluation , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[30]  Alexei Lisounkin,et al.  Modeling closed-loop mechanisms in robots for purposes of calibration , 1997, IEEE Trans. Robotics Autom..

[31]  Claude Perron,et al.  Simulation of Robotic Friction Stir Welding of Aerospace Components , 2008 .

[32]  Cunsheng Zhang,et al.  Experimental and numerical study on effect of forming rate on AA5086 sheet formability , 2010 .