Current-induced birefringent absorption and non-reciprocal plasmons in graphene

We present extensive calculations of the optical and plasmonic properties of a graphene sheet carrying a dc current. By calculating analytically the density–density response function of current-carrying states at finite temperature, we demonstrate that an applied dc current modifies the Pauli blocking mechanism and that absorption acquires a birefringent character with respect to the angle between the in-plane light polarization and current flow. Employing random phase approximation at finite temperature, we show that graphene plasmons display a degree of non-reciprocity and collimation that can be tuned with the applied current. We discuss the possibility to measure these effects.

[1]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[2]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[3]  F. J. Garcia-Vidal,et al.  Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons , 2011, 1201.0191.

[4]  P. Avouris,et al.  Graphene plasmonics for terahertz to mid-infrared applications. , 2014, ACS nano.

[5]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[6]  G. Vignale,et al.  Highly confined low-loss plasmons in graphene-boron nitride heterostructures. , 2014, Nature materials.

[7]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[8]  G. Vignale,et al.  Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride , 2014, 1408.1653.

[9]  Extraordinary absorption of decorated undoped graphene. , 2013, Physical review letters.

[10]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[11]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[12]  M. Polini,et al.  Accessing Phonon Polaritons in Hyperbolic Crystals by Angle-Resolved Photoemission Spectroscopy. , 2015, Physical review letters.

[13]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[14]  R. Egerton Electron energy-loss spectroscopy in the TEM , 2008 .

[15]  N. Peres,et al.  Colloquium: The transport properties of graphene: An introduction , 2010, 1007.2849.

[16]  A. Kuzmenko,et al.  Universal optical conductance of graphite. , 2007, Physical review letters.

[17]  M. Engel,et al.  Light–matter interaction in a microcavity-controlled graphene transistor , 2011, Nature Communications.

[18]  Kwang Soo Kim,et al.  Drift-induced modifications to the dynamical polarization of graphene , 2015, 1509.00339.

[19]  A. MacDonald,et al.  Hydrodynamic theory of transport in doped graphene , 2009, 0906.2992.

[20]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[21]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[22]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[23]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[24]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[25]  A. H. Castro Neto,et al.  Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride , 2014, Science.

[26]  F. D. Abajo,et al.  Graphene Plasmonics: Challenges and Opportunities , 2014, 1402.1969.

[27]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[28]  Giovanni Vignale,et al.  Quantum Theory of the Electron Liquid , 2005 .

[29]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[30]  M. M. Vazifeh,et al.  Finite-temperature screening and the specific heat of doped graphene sheets , 2008, 0811.1723.

[31]  Pierre F. Maldague,et al.  Many-body corrections to the polarizability of the two-dimensional electron gas , 1978 .

[32]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[33]  F. Guinea,et al.  Electron-Electron Interactions in Graphene: Current Status and Perspectives , 2010, 1012.3484.

[34]  A. Bachtold,et al.  Current-induced cleaning of graphene , 2007, 0709.0607.

[35]  K. Loh,et al.  Graphene photonics, plasmonics, and broadband optoelectronic devices. , 2012, ACS nano.

[36]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[37]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[38]  Yuanbo Zhang,et al.  Colloquium: Graphene spectroscopy , 2014, 1407.6721.

[39]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[40]  Wenjuan Zhu,et al.  Photocurrent in graphene harnessed by tunable intrinsic plasmons , 2013, Nature Communications.

[41]  F. Vasko,et al.  Electro-optics of graphene: Field-modulated reflection and birefringence , 2009, 0912.0851.