Dynamic objective and subjective rationality

We characterize prior-by-prior Bayesian updating using a model proposed by Gilboa, Maccheroni, Marinacci and Schmeidler (2010) that jointly considers objective and subjective rationality. These rationality concepts are subject to the Bewley unanimity rule and maxmin expected utility, respectively, with a common set of priors and the same utility over consequences. We use this setup with two preference relations to develop a novel rationale for full Bayesian updating of maxmin expected utility preferences

[1]  Itzhak Gilboa,et al.  Updating Ambiguous Beliefs , 1992, TARK.

[2]  M. Machina Dynamic Consistency and Non-expected Utility Models of Choice under Uncertainty , 1989 .

[3]  Ehud Lehrer,et al.  Extension Rules or What Would the Sage Do , 2014 .

[4]  Eran Hanany,et al.  Updating Preferences with Multiple Priors , 2006 .

[5]  Edi Karni,et al.  "Reverse Bayesianism": A Choice-Based Theory of Growing Awareness , 2013 .

[6]  Klaus Nehring Ambiguity in the Context of Probabilistic Beliefs , 2001 .

[7]  A. Rubinstein Similarity and decision-making under risk (is there a utility theory resolution to the Allais paradox?) , 1988 .

[8]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[9]  Marciano Siniscalchi Bayesian Updating for General Maxmin Expected Utility Preferences , 2001 .

[10]  T. Bewley Knightian decision theory. Part I , 2002 .

[11]  Massimo Marinacci,et al.  Revealed Ambiguity and Its Consequences: Updating , 2008 .

[12]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[13]  Massimo Marinacci,et al.  Monotone Continuous Multiple Priors ∗ , 2003 .

[14]  A. Sen,et al.  Rationality and uncertainty , 1985 .

[15]  V. Filipe Martins-da-Rocha Interim efficiency with MEU-preferences , 2010, J. Econ. Theory.

[16]  R. M. Adelson,et al.  Utility Theory for Decision Making , 1971 .

[17]  Paolo Ghirardato,et al.  Revisiting Savage in a conditional world , 2002 .

[18]  I. Gilboa,et al.  Objective and Subjective Rationality in a Multiple Prior Model , 2010 .

[19]  S. Greco,et al.  Necessary and possible preference structures , 2013 .

[20]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[21]  I. Gilboa Expected utility with purely subjective non-additive probabilities , 1987 .

[22]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[23]  Igor Kopylov,et al.  Choice deferral and ambiguity aversion , 2009 .

[24]  Leandro Nascimento,et al.  The ex-ante aggregation of opinions under uncertainty , 2012 .

[25]  Andrei Savochkin,et al.  Dynamically stable preferences , 2013, J. Econ. Theory.

[26]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[27]  P. Wakker,et al.  Dynamic Choice and NonExpected Utility , 1998 .

[28]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[29]  Marciano M. Siniscalchi,et al.  Dynamic Choice Under Ambiguity , 2006 .

[30]  Edi Karni,et al.  Atemporal dynamic consistency and expected utility theory , 1991 .

[31]  Michael Mandler,et al.  Incomplete preferences and rational intransitivity of choice , 2005, Games Econ. Behav..

[32]  Massimo Marinacci,et al.  Uncertainty averse preferences , 2011, J. Econ. Theory.

[33]  S. Greco,et al.  Rational preference and rationalizable choice , 2018, Economic Theory.

[34]  Larry G. Epstein,et al.  Dynamically Consistent Beliefs Must Be Bayesian , 1993 .

[35]  T. Bewley Knightian Decision Theory, Part II. Intertemporal Problems , 1987 .

[36]  Alain Chateauneuf,et al.  Ambiguity through confidence functions , 2009 .

[37]  Atsushi Kajii,et al.  Interim efficient allocations under uncertainty , 2009, J. Econ. Theory.

[38]  Klaus Nehring,et al.  Imprecise probabilistic beliefs as a context for decision-making under ambiguity , 2009, J. Econ. Theory.

[39]  J. Schreiber Foundations Of Statistics , 2016 .

[40]  Eric Danan,et al.  Revealed preference and indifferent selection , 2008, Math. Soc. Sci..

[41]  I. Gilboa Theory Of Decision Under Uncertainty , 2009 .

[42]  Alain Chateauneuf,et al.  On the use of capacities in modeling uncertainty aversion and risk aversion , 1991 .

[43]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[44]  C. Pires A Rule For Updating Ambiguous Beliefs , 2002 .

[45]  S. Cerreia-Vioglio Objective rationality and uncertainty averse preferences , 2016 .

[46]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[47]  José Heleno Faro Variational Bewley preferences , 2011, J. Econ. Theory.

[48]  José Heleno Faro,et al.  Ambiguity through Con dence Functions , 2008 .