Convergence of Nonlinear Schrödinger–Poisson Systems to the Compressible Euler Equations

Abstract The combined semi-classical and quasineutral limit in the bipolar defocusing nonlinear Schrödinger–Poisson system in the whole space is proven. The electron and current densities, defined by the solution of the Schrödinger–Poisson system, converge to the solution of the compressible Euler equation with nonlinear pressure. The corresponding Wigner function of the Schrödinger–Poisson system converges to a solution of a nonlinear Vlasov equation. The proof of these results is based on estimates of a modulated energy functional and on the Wigner measure method.

[1]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[2]  Ping Zhang,et al.  On the hydrodynamic limit of Ginzburg‐Landau wave vortices , 2002 .

[3]  Ling Hsiao,et al.  Quasi-neutral Limit of a Nonlinear Drift Diffusion Model for Semiconductors , 2002 .

[4]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[5]  Franco Brezzi,et al.  The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation , 1991 .

[6]  C. David Levermore,et al.  The Semiclassical Limit of the Defocusing NLS Hierarchy , 1999 .

[7]  Christian Schmeiser,et al.  The initial time layer problem and the quasineutral limit in the semiconductor drift-diffusion model , 2001, European Journal of Applied Mathematics.

[8]  Emmanuel Grenier,et al.  Defect measures of the vlasov-poisson system in the quasineutral regime , 1995 .

[9]  P. Markowich,et al.  Quantum hydrodynamics, Wigner transforms, the classical limit , 1997 .

[10]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[11]  Ni e Cedex A Hierarchy of Hydrodynamic Models for Plasmas. Quasi-Neutral Limits in the Drift-Diffusion Equations , 1999 .

[12]  Ping Zhang,et al.  On the weak solutions to a shallow water equation , 2000 .

[13]  Chi-Kun Lin,et al.  A REVIEW OF DISPERSIVE LIMITS OF (NON)LINEAR SCHR¨ODINGER-TYPE EQUATIONS , 2000 .

[14]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[15]  E. N. da C. A.,et al.  Lehrbuch der theoretischen Physik , 1933, Nature.

[16]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[17]  E. Grenier Pseudo-differential energy estimates of singular perturbations , 1997 .

[18]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[19]  Emmanuel Grenier Oscillations in quasineutral plasmas , 1996 .

[20]  Y. Brenier,et al.  convergence of the vlasov-poisson system to the incompressible euler equations , 2000 .

[21]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[22]  Ping Zhang,et al.  Wigner Measure and the Semiclassical Limit of Schrödinger-Poisson Equations , 2002, SIAM J. Math. Anal..

[23]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[24]  Norbert J. Mauser,et al.  The Schrödinger-Poisson-X equation , 2001, Appl. Math. Lett..

[25]  Nakao Hayashi,et al.  Global existence of small solutions to nonlinear Schro¨dinger equations , 1998 .

[26]  J. Chemin Dynamique des gaz à masse totale finie , 1990 .

[27]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[28]  S. Ukai,et al.  Sur la solution à support compact de l’equation d’Euler compressible , 1986 .

[29]  Ping Zhang,et al.  The limit from the Schrödinger‐Poisson to the Vlasov‐Poisson equations with general data in one dimension , 2002 .

[30]  L. Tartar H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.