Parallel time-dependent variational principle algorithm for matrix product states

Combining the time-dependent variational principle (TDVP) algorithm with the parallelization scheme introduced by Stoudenmire and White for the density matrix renormalization group (DMRG), we present the first parallel matrix product state (MPS) algorithm capable of time evolving one-dimensional (1D) quantum lattice systems with long-range interactions. We benchmark the accuracy and performance of the algorithm by simulating quenches in the long-range Ising and XY models. We show that our code scales well up to 32 processes, with parallel efficiencies as high as 86%. Finally, we calculate the dynamical correlation function of a 201-site Heisenberg XXX spin chain with $1/r^2$ interactions, which is challenging to compute sequentially. These results pave the way for the application of tensor networks to increasingly complex many-body systems.

[1]  Andrew Y. Guo,et al.  Operator Lévy Flight: Light Cones in Chaotic Long-Range Interacting Systems. , 2020, Physical review letters.

[2]  Tomotaka Kuwahara,et al.  Strictly Linear Light Cones in Long-Range Interacting Systems of Arbitrary Dimensions , 2019, 1910.14477.

[3]  Jad C. Halimeh,et al.  Hybrid infinite time-evolving block decimation algorithm for long-range multidimensional quantum many-body systems , 2019, 1910.10726.

[4]  Xiaoyu Xie,et al.  Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems. , 2019, The Journal of chemical physics.

[5]  Titas Chanda,et al.  Time dynamics with matrix product states: Many-body localization transition of large systems revisited , 2019, Physical Review B.

[6]  M. Aichhorn,et al.  Time dependent variational principle for tree Tensor Networks , 2019, SciPost Physics.

[7]  Zhigang Shuai,et al.  Numerical assessment for accuracy and GPU acceleration of TD-DMRG time evolution schemes. , 2019, The Journal of chemical physics.

[8]  Z. Shuai,et al.  Numerical Assessment for Accuracy and Efficiency of Time Evolution Schemes in TD-DMRG algorithm: CPU vs GPU. , 2019 .

[9]  Andrew Lucas,et al.  Finite Speed of Quantum Scrambling with Long Range Interactions. , 2019, Physical review letters.

[10]  Alessandro Silva,et al.  Dynamical phase diagram of a quantum Ising chain with long-range interactions , 2019, Physical Review B.

[11]  I. Vakulchyk,et al.  Propagating large open quantum systems towards their asymptotic states: cluster implementation of the time-evolving block decimation scheme , 2019, Journal of Physics: Conference Series.

[12]  M. Heyl,et al.  Disentangling sources of quantum entanglement in quench dynamics , 2019, Physical Review Research.

[13]  W. Domcke,et al.  Origin of Unexpectedly Simple Oscillatory Responses in the Excited-State Dynamics of Disordered Molecular Aggregates. , 2019, The journal of physical chemistry letters.

[14]  M. Rams,et al.  Breaking the Entanglement Barrier: Tensor Network Simulation of Quantum Transport. , 2019, Physical review letters.

[15]  J. Eisert,et al.  Towards overcoming the entanglement barrier when simulating long-time evolution , 2019, 1904.11999.

[16]  M. Troyer,et al.  Understanding repulsively mediated superconductivity of correlated electrons via massively parallel density matrix renormalization group , 2019, Physical Review B.

[17]  Alberto Baiardi,et al.  Large-Scale Quantum Dynamics with Matrix Product States. , 2019, Journal of chemical theory and computation.

[18]  M. Zaletel,et al.  Isometric Tensor Network States in Two Dimensions. , 2019, Physical review letters.

[19]  Thomas Kohler,et al.  Time-evolution methods for matrix-product states , 2019, Annals of Physics.

[20]  D. Reichman,et al.  Multiset Matrix Product State Calculations Reveal Mobile Franck-Condon Excitations Under Strong Holstein-Type Coupling. , 2018, Physical review letters.

[21]  Silvia Pappalardi,et al.  Origin of the slow growth of entanglement entropy in long-range interacting spin systems , 2018, Physical Review Research.

[22]  A. Gambassi,et al.  Quasilocalized excitations induced by long-range interactions in translationally invariant quantum spin chains , 2018, Physical Review B.

[23]  A. Popova University of Bath , 2018, The Grants Register 2022.

[24]  J. Dongarra,et al.  The Singular Value Decomposition: Anatomy of Optimizing an Algorithm for Extreme Scale , 2018, SIAM Rev..

[25]  R. Borrelli,et al.  Theoretical study of charge-transfer processes at finite temperature using a novel thermal Schrödinger equation , 2018, Chemical Physics.

[26]  C. Monroe,et al.  Confined Quasiparticle Dynamics in Long-Range Interacting Quantum Spin Chains. , 2018, Physical Review Letters.

[27]  I. Danshita,et al.  Performance of the time-dependent variational principle for matrix product states in the long-time evolution of a pure state , 2018, Physical Review B.

[28]  Yuki Kurashige Matrix product state formulation of the multiconfiguration time-dependent Hartree theory. , 2018, The Journal of chemical physics.

[29]  Peter Kandolf,et al.  Backward error analysis of polynomial approximations for computing the action of the matrix exponential , 2018, BIT Numerical Mathematics.

[30]  A. Gambassi,et al.  Impact of nonequilibrium fluctuations on prethermal dynamical phase transitions in long-range interacting spin chains , 2018, Physical Review B.

[31]  R. Nandkishore,et al.  Quantum dynamics of disordered spin chains with power-law interactions , 2018, Physical Review A.

[32]  R. Fazio,et al.  Scrambling and entanglement spreading in long-range spin chains , 2018, Physical Review B.

[33]  David J. Luitz,et al.  Emergent locality in systems with power-law interactions , 2018, Physical Review A.

[34]  Immanuel Bloch,et al.  Colloquium : Many-body localization, thermalization, and entanglement , 2018, Reviews of Modern Physics.

[35]  Yevgeny Bar Lev,et al.  Spin transport in a long-range-interacting spin chain , 2018, Physical Review A.

[36]  Dieter Jaksch,et al.  Multigrid renormalization , 2018, J. Comput. Phys..

[37]  Glen Evenbly,et al.  Gauge fixing, canonical forms, and optimal truncations in tensor networks with closed loops , 2018, Physical Review B.

[38]  U. Schollwock,et al.  Error estimates for extrapolations with matrix-product states , 2017, 1711.01104.

[39]  Jad C. Halimeh,et al.  Probing the anomalous dynamical phase in long-range quantum spin chains through Fisher-zero lines. , 2017, Physical review. E.

[40]  R. Borrelli,et al.  Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics , 2017, Scientific Reports.

[41]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[42]  G. Chan,et al.  Time-Step Targeting Time-Dependent and Dynamical Density Matrix Renormalization Group Algorithms with ab Initio Hamiltonians. , 2017, Journal of chemical theory and computation.

[43]  G. Carleo,et al.  Universal scaling laws for correlation spreading in quantum systems with short- and long-range interactions , 2017, Physical Review B.

[44]  Daniel Jaschke,et al.  Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension , 2017, Comput. Phys. Commun..

[45]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[46]  M. L. Wall,et al.  Critical phenomena and Kibble–Zurek scaling in the long-range quantum Ising chain , 2016, 1612.07437.

[47]  Yevgeny Bar Lev,et al.  The ergodic side of the many‐body localization transition , 2016, 1610.08993.

[48]  Sarah Al-Assam,et al.  The tensor network theory library , 2016, 1610.02244.

[49]  Jad C. Halimeh,et al.  Dynamical phase diagram of quantum spin chains with long-range interactions , 2016, 1610.02019.

[50]  Jad C. Halimeh,et al.  Prethermalization and persistent order in the absence of a thermal phase transition , 2016, 1610.01468.

[51]  M. Heyl,et al.  Dynamical Quantum Phase Transitions in Spin Chains with Long-Range Interactions: Merging Different Concepts of Nonequilibrium Criticality. , 2016, Physical review letters.

[52]  H. Ueda Infinite-Size Density Matrix Renormalization Group with Parallel Hida’s Algorithm , 2016, Journal of the Physical Society of Japan.

[53]  R. Moessner,et al.  Effect of long-range hopping and interactions on entanglement dynamics and many-body localization , 2016, 1606.04542.

[54]  P. Calabrese,et al.  Real-time confinement following a quantum quench to a non-integrable model , 2016, Nature Physics.

[55]  Christopher T. Chubb,et al.  Hand-waving and interpretive dance: an introductory course on tensor networks , 2016, 1603.03039.

[56]  I. Bloch,et al.  Many-body interferometry of a Rydberg-dressed spin lattice , 2016, Nature Physics.

[57]  Miroslav Urbánek,et al.  Parallel implementation of the time-evolving block decimation algorithm for the Bose-Hubbard model , 2016, Comput. Phys. Commun..

[58]  A. Daley,et al.  Entanglement growth and correlation spreading with variable-range interactions in spin and fermionic tunneling models , 2016, 1601.02106.

[59]  Frank Pollmann,et al.  Density matrix renormalization group on a cylinder in mixed real and momentum space , 2015, 1512.03318.

[60]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[61]  H Germany,et al.  Matrix-product-state method with a dynamical local basis optimization for bosonic systems out of equilibrium , 2015, 1508.00694.

[62]  Alex W. Chin,et al.  Simulating open quantum dynamics with time-dependent variational matrix product states: Towards microscopic correlation of environment dynamics and reduced system evolution , 2015, 1507.02202.

[63]  Ireneusz W. Bulik,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE Solutions of the Two-Dimensional Hubbard Model : Benchmarks and Results from a Wide Range of Numerical Algorithms / , 2022 .

[64]  Michael Kastner,et al.  Interplay of soundcone and supersonic propagation in lattice models with power law interactions , 2015, 1502.05891.

[65]  I. McCulloch,et al.  Strictly single-site DMRG algorithm with subspace expansion , 2015, 1501.05504.

[66]  F. Verstraete,et al.  Tensor product methods and entanglement optimization for ab initio quantum chemistry , 2014, 1412.5829.

[67]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[68]  Ivan V. Oseledets,et al.  Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..

[69]  Frank Pollmann,et al.  Time-evolving a matrix product state with long-ranged interactions , 2014, 1407.1832.

[70]  J. Cirac,et al.  Algorithms for finite projected entangled pair states , 2014, 1405.3259.

[71]  Alexey V Gorshkov,et al.  Persistence of locality in systems with power-law interactions. , 2014, Physical review letters.

[72]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[73]  Aaron C. E. Lee,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[74]  J. Ignacio Cirac,et al.  Unifying projected entangled pair state contractions , 2013, 1311.6696.

[75]  Péter Szolgay,et al.  The density matrix renormalization group algorithm on kilo-processor architectures: Implementation and trade-offs , 2013, Comput. Phys. Commun..

[76]  J. Eisert,et al.  Breakdown of quasilocality in long-range quantum lattice models. , 2013, Physical review letters.

[77]  S. Depenbrock Tensor networks for the simulation of strongly correlated systems , 2013 .

[78]  Bart Vandereycken,et al.  The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.

[79]  C. F. Roos,et al.  Entanglement growth in quench dynamics with variable range interactions , 2013, 1305.6880.

[80]  Jun Ye,et al.  Observation of dipolar spin-exchange interactions with lattice-confined polar molecules , 2013, Nature.

[81]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[82]  P. Hauke,et al.  Spread of correlations in long-range interacting quantum systems. , 2013, Physical review letters.

[83]  Steven R. White,et al.  Real-space parallel density matrix renormalization group , 2013, 1301.3494.

[84]  F. Verstraete,et al.  Geometry of Matrix Product States: metric, parallel transport and curvature , 2012, 1210.7710.

[85]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[86]  I. Bloch,et al.  Observation of spatially ordered structures in a two-dimensional Rydberg gas , 2012, Nature.

[87]  Luca Tagliacozzo,et al.  Entanglement entropy for the long-range Ising chain in a transverse field. , 2012, Physical review letters.

[88]  Ho N. Phien,et al.  Infinite boundary conditions for matrix product state calculations , 2012, 1207.0652.

[89]  M. L. Wall,et al.  Out-of-equilibrium dynamics with matrix product states , 2012, 1205.1020.

[90]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[91]  Reinhold Schneider,et al.  On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.

[92]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[93]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[94]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[95]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[96]  Simon Friederich,et al.  Functional renormalization for spontaneous symmetry breaking in the Hubbard model , 2010, 1012.5436.

[97]  Axel Maas,et al.  On gauge fixing , 2010, 1010.5718.

[98]  Guifre Vidal,et al.  Tensor network states and algorithms in the presence of a global SU(2) symmetry , 2010, 1008.4774.

[99]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[100]  W. Dur,et al.  Tensor operators: Constructions and applications for long-range interaction systems , 2010, 1003.1047.

[101]  Steven R. White,et al.  Minimally entangled typical thermal state algorithms , 2010, 1002.1305.

[102]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[103]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[104]  Yuki Kurashige,et al.  High-performance ab initio density matrix renormalization group method: applicability to large-scale multireference problems for metal compounds. , 2009, The Journal of chemical physics.

[105]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[106]  F. Verstraete,et al.  Matrix product operator representations , 2008, 0804.3976.

[107]  Guifre Vidal,et al.  Applying matrix product operators to model systems with long-range interactions , 2008, 0804.2504.

[108]  Dave Bacon,et al.  Finite automata for caching in matrix product algorithms , 2007, 0708.1221.

[109]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[110]  I. McCulloch From density-matrix renormalization group to matrix product states , 2007, cond-mat/0701428.

[111]  J. García-Ripoll Time evolution algorithms for Matrix Product States and DMRG , 2006, cond-mat/0610210.

[112]  F. Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[113]  F. Verstraete,et al.  Lieb-Robinson bounds and the generation of correlations and topological quantum order. , 2006, Physical review letters.

[114]  J. García-Ripoll Time evolution of Matrix Product States , 2006, cond-mat/0602305.

[115]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[116]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2005, quant-ph/0512222.

[117]  S. White Density matrix renormalization group algorithms with a single center site , 2005, cond-mat/0508709.

[118]  N. Hatano,et al.  Finding Exponential Product Formulas of Higher Orders , 2005, math-ph/0506007.

[119]  F. Verstraete,et al.  Matrix product states represent ground states faithfully , 2005, cond-mat/0505140.

[120]  A. Feiguin,et al.  Time-step targeting methods for real-time dynamics using the density matrix renormalization group , 2005, cond-mat/0502475.

[121]  G. Vidal,et al.  A pr 2 00 4 Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2022 .

[122]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[123]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical review letters.

[124]  G. Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2003, Physical review letters.

[125]  H.Fehske,et al.  Parallelization strategies for density matrix renormalization group algorithms on shared-memory systems , 2003, cond-mat/0305463.

[126]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[127]  W. Baumol Out of equilibrium , 2000 .

[128]  T. Nishino,et al.  Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains , 1997, cond-mat/9710310.

[129]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[130]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[131]  S. Eisenstat,et al.  A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..

[132]  Jeffery D. Rutter LAPACK Working Note 69: A Serial Implementation of Cuppen''s Divide and Conquer Algorithm for the Symmetric Eigenvalue Problem , 1994 .

[133]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[134]  Haldane,et al.  Exact calculation of the ground-state dynamical spin correlation function of a S=1/2 antiferromagnetic Heisenberg chain with free spinons. , 1993, Physical review letters.

[135]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[136]  J. Broeckhove,et al.  On the equivalence of time-dependent variational-principles , 1988 .

[137]  Shastry,et al.  Exact solution of an S=1/2 Heisenberg antiferromagnetic chain with long-ranged interactions. , 1988, Physical review letters.

[138]  Haldane,et al.  Exact Jastrow-Gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/r2 exchange. , 1988, Physical review letters.

[139]  T. Park,et al.  Unitary quantum time evolution by iterative Lanczos reduction , 1986 .

[140]  Andr'e Nauts,et al.  New Approach to Many-State Quantum Dynamics: The Recursive-Residue-Generation Method , 1983 .

[141]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[142]  D. W. Robinson,et al.  The finite group velocity of quantum spin systems , 1972 .

[143]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[144]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[145]  D. Abanin Many-body localization, thermalization, and entanglement , 2019 .

[146]  J. Coulthard Engineering quantum states of fermionic many-body systems , 2018 .

[147]  M. L. Wall,et al.  Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices , 2015 .

[148]  S. V. Dolgov,et al.  ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .

[149]  Audun Skaugen Time evolution of magnetic Bloch oscillations using TEBD , 2013 .

[150]  C. Goodyer TNT Library : Tensor Manipulation and Storage , 2013 .

[151]  J. H. Conway,et al.  private communication , 1983 .

[152]  A. D. McLachlan,et al.  A variational solution of the time-dependent Schrodinger equation , 1964 .