Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure.

[1]  D. Rueger,et al.  Induction of bone formation by recombinant human osteogenic protein-1 and sintered porous hydroxyapatite in adult primates. , 2001, Plastic and reconstructive surgery.

[2]  L. Sedel,et al.  Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy. , 2000, Journal of biomedical materials research.

[3]  S. Ramesh,et al.  Effects of Sintering Temperature on the Properties of Hydroxyapatite , 2000 .

[4]  C. Chung,et al.  Serial passage of MC3T3-E1 cells alters osteoblastic function and responsiveness to transforming growth factor-beta1 and bone morphogenetic protein-2. , 1999, Biochemical and biophysical research communications.

[5]  S. Boden,et al.  Posterolateral Lumbar Intertransverse Process Spine Arthrodesis With Recombinant Human Bone Morphogenetic Protein 2/Hydroxyapatite‐Tricalcium Phosphate After Laminectomy in the Nonhuman Primate , 1999, Spine.

[6]  X. Y. Yang,et al.  Preparation and characterization of bioactive monolayer and functionally graded coatings , 1999, Journal of materials science. Materials in medicine.

[7]  M. Almeida,et al.  Porosity control of hydroxyapatite implants , 1999, Journal of materials science. Materials in medicine.

[8]  J Amédée,et al.  Cellular biocompatibility and resistance to compression of macroporous beta-tricalcium phosphate ceramics. , 1998, Biomaterials.

[9]  S. Simske,et al.  Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans. , 1998, Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons.

[10]  C. Ju,et al.  Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite , 1998 .

[11]  J. Strub,et al.  Maxillary sinus augmentation using different grafting materials and osseointegrated dental implants in monkeys. Part II. Evaluation of porous hydroxyapatite as a grafting material. , 1997, Clinical oral implants research.

[12]  G. Daculsi,et al.  Macroporous biphasic calcium phosphate ceramics: influence of five synthesis parameters on compressive strength. , 1996, Journal of biomedical materials research.

[13]  W. Tong,et al.  Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. , 1996, Biomaterials.

[14]  R. Langer,et al.  In vitro bone biocompatibility of poly(anhydride‐co‐imides) containing pyromellitylimidoalanine , 1996, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[15]  R. Langer,et al.  Cytotoxicity testing of poly(anhydride-co-imides) for orthopedic applications. , 1995, Journal of biomedical materials research.

[16]  V. M. Castano,et al.  Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity , 1995 .

[17]  Gregory Stephanopoulos,et al.  Effects of substratum morphology on cell physiology , 1994, Biotechnology and bioengineering.

[18]  B. Alliot-Licht,et al.  Cellular activity of osteoblasts in the presence of hydroxyapatite: an in vitro experiment. , 1991, Biomaterials.

[19]  K. Klomparens,et al.  Effects of substrate texture and curvature on the morphology of cultured cells. , 1991, Journal of electron microscopy technique.

[20]  H. Schliephake,et al.  Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. A histometric study. , 1991, International journal of oral and maxillofacial surgery.

[21]  I. Orly,et al.  The influence of calcium phosphate biomaterials on human bone cell activities. An in vitro approach. , 1990, Journal of biomedical materials research.

[22]  H. Sudo,et al.  Development of a new system for evaluating the biocompatibility of implant materials using an osteogenic cell line (MC3T3-E1). , 1988, Journal of biomedical materials research.

[23]  J. J. Grote,et al.  Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. , 1986, Biomaterials.

[24]  S. Kumar,et al.  A simplified in situ solubilization procedure for the determination of DNA and cell number in tissue cultured mammalian cells. , 1985, Analytical biochemistry.

[25]  Y. Amagai,et al.  In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria , 1983, The Journal of cell biology.

[26]  D. Deligianni,et al.  Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. , 2001, Biomaterials.

[27]  M. Wagner,et al.  Mehrlagen-Foliengiessen zur direkten Herstellung geschichteter keramischer Verbundstrukturen und Untersuchung ihrer mechanischen Eigenschaften , 2000 .

[28]  A. Kirkbride,et al.  SINTERED POROUS HYDROXYAPATITES WITH INTRINSIC OSTEOINDUCTIVE ACTIVITY: GEOMETRIC INDUCTION OF BONE FORMATION , 1999 .

[29]  Dean‐Mo Liu Preparation and characterisation of porous hydroxyapatite bioceramic via a slip-casting route , 1998 .

[30]  Olivier Gauthier,et al.  Macroporous biphasic calcium phosphate ceramics , 1997 .

[31]  O. Trentz,et al.  Testung von Knochenimplantaten auf Zellinien und humanen Osteoblasten , 1997, Der Unfallchirurg.

[32]  A. Ruys,et al.  Sintering effects on the strength of hydroxyapatite. , 1995, Biomaterials.

[33]  C. Laurencin,et al.  Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material. , 1993, Biomaterials.