UNIVERSITY OF CALIFORNIA, SAN DIEGO Kinetic Model Reconstruction of Phytoplankton Light-Dependent Reactions and Implementation Towards Membrane Constraints A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Bioengineering

[1]  Karsten Zengler,et al.  Genome-Scale Model Reveals Metabolic Basis of Biomass Partitioning in a Model Diatom , 2016, PloS one.

[2]  J. Lavaud,et al.  Photosystem II cycle activity and alternative electron transport in the diatom Phaeodactylum tricornutum under dynamic light conditions and nitrogen limitation , 2016, Photosynthesis Research.

[3]  B. Palsson Systems Biology: Constraint-based Reconstruction and Analysis , 2015 .

[4]  Kunio Hirata,et al.  Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses , 2014, Nature.

[5]  D. Voytas,et al.  Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology , 2014, Nature Communications.

[6]  H. Kirchhoff Diffusion of molecules and macromolecules in thylakoid membranes. , 2014, Biochimica et biophysica acta.

[7]  Radhakrishnan Mahadevan,et al.  Economics of membrane occupancy and respiro-fermentation , 2011, Molecular systems biology.

[8]  H. Kirchhoff Significance of protein crowding, order and mobility for photosynthetic membrane functions. , 2008, Biochemical Society transactions.

[9]  S. Thoms,et al.  FROM ELECTRON TO BIOMASS: A MECHANISTIC MODEL TO DESCRIBE PHYTOPLANKTON PHOTOSYNTHESIS AND STEADY‐STATE GROWTH RATES 1 , 2006 .

[10]  G. Guglielmi,et al.  The light‐harvesting antenna of the diatom Phaeodactylum tricornutum , 2005, The FEBS journal.

[11]  P. Harrison,et al.  Photosynthetic architecture differs in coastal and oceanic diatoms , 2004, Nature.

[12]  Ansgar Philippsen,et al.  Structural Analysis of the Reaction Center Light-harvesting Complex I Photosynthetic Core Complex of Rhodospirillum rubrum Using Atomic Force Microscopy* , 2004, Journal of Biological Chemistry.

[13]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[14]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[15]  W. Lubitz,et al.  P700: the primary electron donor of photosystem I. , 2001, Biochimica et biophysica acta.

[16]  H. J. Gorkom,et al.  Kinetics of Electron Transfer from QA to QB in Photosystem II , 2001 .

[17]  J. Baird A Generalized Statement of the Law of Mass Action , 1999 .

[18]  P. Joliot,et al.  In vivo analysis of the electron transfer within photosystem I: are the two phylloquinones involved? , 1999, Biochemistry.

[19]  A. Holzenburg,et al.  Three-dimensional Structure of Higher Plant Photosystem I Determined by Electron Crystallography* , 1998, The Journal of Biological Chemistry.

[20]  G. Feher,et al.  Conformational gating of the electron transfer reaction QA-.QB --> QAQB-. in bacterial reaction centers of Rhodobacter sphaeroides determined by a driving force assay. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  E. Gross Plastocyanin: Structure and function , 1993, Photosynthesis Research.

[22]  E. Boekema,et al.  Size, shape and mass of the oxygen‐evolving photosystem II complex from the thermophilic cyanobacterium Synechococcus sp , 1987 .

[23]  O. Björkman,et al.  Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins , 1987, Planta.

[24]  M. Ballottari,et al.  Evolution and functional properties of photosystem II light harvesting complexes in eukaryotes. , 2012, Biochimica et biophysica acta.

[25]  K. Satoh,et al.  Photosystem II, the Light-Driven Water: Plastoquinone Oxidoreductase , 2005 .

[26]  R. van Grondelle,et al.  Primary charge separation in Photosystem II , 2004, Photosynthesis Research.

[27]  J. Barber,et al.  Photosystem II. , 1999, Current opinion in structural biology.

[28]  T. Kallas,et al.  The Cytochrome b6f Complex , 1994 .

[29]  G. Krause,et al.  Chlorophyll Fluorescence and Photosynthesis: The Basics , 1991 .

[30]  Cyrus Chothia,et al.  The accessible surface area and stability of oligomeric proteins , 1987, Nature.