Radiative Heat Loss of Electrical Discharge Machining Process Through Hydrocarbon Oil and Deionized Water Dielectric Liquids

In the field of plasma modeling for electrical discharge machining (EDM) process, radiative losses are many times include in the energy equation using net emission coefficients (NEC). This is a sink term that accounts for the radiative emissions from the plasma to the surrounding environment. The purpose of this study is to calculate NECs for EDM arc plasmas. Two common plasma mediums, hydrocarbon oil and deionized water, are considered in this work assuming the EDM plasma is in local thermodynamic equilibrium, homogenous and isothermal. NECs are calculated for pressures of 1 and 10 bar for working temperatures commonly seen in EDM plasmas, 5,500–10,000 K. Continuum contributions such as molecular photodissociation, molecular photoionization, electron-molecule bremsstrahlung, electron-atom bremsstrahlung, ionic radiative recombination, and electron–ion bremsstrahlung are included in the calculation of NEC. In addition, the line radiations are calculated by overlapping lines considerations. Results show that radiative heat loss of EDM plasma in the deionized water dielectric medium is less than hydrocarbon oil one. Presented results for the NEC can serve as input data for various numerical models of electrical discharge machining process.

[1]  Jung-Sik Yoon,et al.  Cross Sections for Electron Collisions with Hydrogen Molecules , 2008 .

[2]  Masanori Kunieda,et al.  Clarifying Mechanism of Determining Tool Electrode Wear Ratio in EDM Using Spectroscopic Measurement of Vapor Density , 2002 .

[3]  Yukikazu Itikawa,et al.  Cross Sections for Electron Collisions with Oxygen Molecules , 2009 .

[4]  A combined narrow- and wide-band model for computing the spectral absorption coefficient of CO2, CO, H2O, CH4, C2H2, and NO , 1995 .

[5]  V. Aubrecht,et al.  Calculations of radiation transfer in SF6 plasmas using the method of partial characteristics , 1994 .

[6]  S. Penner Physics of shock waves and high-temperature hydrodynamic phenomena - Ya.B. Zeldovich and Yu.P. Raizer (translated from the Russian and then edited by Wallace D. Hayes and Ronald F. Probstein); Dover Publications, New York, 2002, 944 pp., $34. , 2003 .

[7]  Composition and thermodynamic properties of thermal plasma up to 50 kK , 2007 .

[8]  Farhat Ghanem,et al.  Numerical study of thermal aspects of electric discharge machining process , 2006 .

[9]  R. Benallal,et al.  The Radiation Loss of a Cylindrical Methane-Argon Plasma Arc , 2010 .

[10]  Y. Zel’dovich,et al.  Gas Dynamics. (Book Reviews: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1) , 1970 .

[11]  M. Bartlová,et al.  Net Emission Coefficients of Radiation in Air and SF6 Thermal Plasmas , 2009 .

[12]  A. Gleizes,et al.  Net emission of Ar–H2–He thermal plasmas at atmospheric pressure , 2010 .

[13]  M. Gordon,et al.  The importance of electron-molecule interactions in free-free continuum emission for microwave discharge CVD , 1997 .

[14]  Marco A. Gigosos,et al.  New plasma diagnosis tables of hydrogen Stark broadening including ion dynamics , 1996 .

[15]  Z. Ben Lakhdar,et al.  Net emission of H2O–air–MgCl2/CaCl2/NaCl thermal plasmas , 2008 .

[16]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[17]  Bijoy Bhattacharyya,et al.  Modeling and analysis of white layer depth in a wire-cut EDM process through response surface methodology , 2005 .

[18]  Kamlakar P Rajurkar,et al.  Thermal modeling and on-line monitoring of wire-EDM , 1993 .

[19]  E. Pfender,et al.  Line-by-line method of calculating emission coefficients for thermal plasmas consisting of monatomic species , 1996 .

[20]  H. El-Hofy Advanced Machining Processes: Nontraditional and Hybrid Machining Processes , 2005 .

[21]  C. Y. Wu,et al.  Temperature-dependent photoabsorption cross sections in the VUV-UV region. I. Methane and ethane , 2004 .

[22]  P. Banks Collision frequencies and energy transfer electrons , 1966 .

[23]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[24]  Ch. Hollenstein,et al.  Time-resolved imaging and spatially-resolved spectroscopy of electrical discharge machining plasma , 2005 .

[25]  J. Cooper,et al.  Hydrogen Stark-Broadening Tables , 1973 .

[26]  Norliana Mohd Abbas,et al.  A review on current research trends in electrical discharge machining (EDM) , 2007 .

[27]  Pei-Jen Wang,et al.  Comparisons of neural network models on material removal rate in electrical discharge machining , 2001 .

[28]  Elman C Jameson,et al.  Electrical Discharge Machining , 2001 .

[29]  Pierre Freton,et al.  Comparison between a two- and a three-dimensional arc plasma configuration , 2000 .

[30]  J. Hoffman,et al.  Net emission coefficients of low temperature thermal iron-helium plasma , 2008 .

[31]  Pei-Jen Wang,et al.  Semi-empirical model of surface finish on electrical discharge machining , 2001 .

[32]  E. Pfender,et al.  A two-fluid model of turbulence for a thermal plasma jet , 1995 .

[33]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[34]  J. Menart Radiative transport in a two-dimensional axisymmetric thermal plasma using the S–N discrete ordinates method on a line-by-line basis , 2000 .

[35]  F. Cabannes,et al.  Spectroscopic plasma diagnostics , 1971 .

[36]  D. Judge,et al.  Temperature‐dependent photoabsorption cross sections in the VUV‐UV region: Ethylene , 2004 .

[37]  A. Zecca,et al.  One century of experiments on electron-atom and molecule scattering: A critical review of integral cross-sections , 1996 .

[38]  G. P. Mantas Electron collision frequencies and energy transfer rates , 1974 .

[39]  K. Musioł,et al.  The temperature of a plasma used in electrical discharge machining , 1996 .

[40]  C. Niemann,et al.  Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion , 2003 .

[41]  Alain Gleizes,et al.  Calculation of net emission coefficient in N2, SF6 and SF6-N2 arc plasmas , 1991 .

[42]  Darrell L. Judge,et al.  The absorption cross sections of N2, O2, CO, NO, CO2, N2O, CH4, C2H4, C2H6 and C4H10 from 180 to 700Å , 1973 .

[43]  Mukund R. Patel,et al.  Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model , 1993 .

[44]  Christopher O. Johnston,et al.  Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan Entry , 2006 .

[45]  Paul Felenbok,et al.  Data for plasmas in local thermodynamic equilibrium , 1965 .

[46]  Azli Yahya,et al.  Determination of material removal rate of an electro-discharge machine using dimensional analysis , 2004 .

[47]  J. Lowke,et al.  Radiation emission coefficients for sulfur hexafluoride arc plasmas , 1976 .

[48]  George P. Petropoulos,et al.  Modeling of surface finish in electro-discharge machining based upon statistical multi-parameter analysis , 2004 .

[49]  Pei-Jen Wang,et al.  Predictions on surface finish in electrical discharge machining based upon neural network models , 2001 .

[50]  J. Menart,et al.  Net emission coefficients for argon-iron thermal plasmas , 2002 .

[51]  A. Gleizes,et al.  Net emission coefficient of air thermal plasmas , 2002 .

[52]  Chikasa Uenosono,et al.  Spectroscopic Approach to the Analysis of High Current Arcs in SF6 , 1980, IEEE Transactions on Plasma Science.

[53]  V. Aubrecht,et al.  Net emission coefficient of radiation in SF6 arc plasmas , 1994 .

[54]  M. Rahmouni,et al.  Computation of net emission of - thermal plasmas , 1997 .

[55]  Yi Wang,et al.  A hybrid intelligent method for modelling the EDM process , 2003 .

[56]  N. Mason,et al.  Cross Sections for Electron Collisions with Water Molecules , 2005 .

[57]  M. Bouaziz,et al.  An experimental and theoretical study of the influence of copper vapour on a arc plasma at atmospheric pressure , 1998 .

[58]  Stephen T. Newman,et al.  State of the art electrical discharge machining (EDM) , 2003 .

[59]  B. Schumacher After 60 years of EDM the discharge process remains still disputed , 2004 .

[60]  J. Lowke,et al.  Predictions of arc temperature profiles using approximate emission coefficients for radiation losses , 1974 .

[61]  S. Nahar Photoionization cross sections and oscillator strengths for oxygen ions: O I-O VII , 1998 .

[62]  G. R. Cook,et al.  Photoionization and Absorption Cross Sections of O2 and N2 in the 600‐ to 1000‐Å Region , 1964 .

[63]  S. Buckman,et al.  Low-energy electron scattering from methane , 1986 .

[64]  V. Helbig,et al.  Stark-broadening study of neutral nitrogen lines , 1976 .

[65]  Hassan El-Hofy,et al.  Machining Technology: Machine Tools and Operations , 2008 .

[66]  D. Hofsaess,et al.  Photoionization cross sections calculated by the scaled Thomas-Fermi method (hv ≤ 50 eV)☆ , 1979 .

[67]  A. V. Phelps,et al.  Momentum-Transfer and Inelastic-Collision Cross Sections for Electrons in O-2, CO, and C O-2 , 1967 .

[68]  J. Paulo Davim,et al.  Machining : fundamentals and recent advances , 2008 .

[69]  C. Hollenstein,et al.  Optical emission spectroscopy of electrical discharge machining plasma , 2004 .

[70]  C. Laux,et al.  Optical Diagnostics and Radiative Emission of Air Plasmas , 1993 .

[71]  Masanori Kunieda,et al.  Spectroscopic measurement of arc plasma diameter in EDM , 2008 .

[72]  R. Benallal,et al.  Computation of the Net Emission Coefficient with the Overlapping Lines Consideration on the CH4-Ar Plasma Discharge , 2011 .

[73]  M.‐T. Lee,et al.  Elastic and absorption cross sections for electron-hydroxyl radical collisions , 2004 .

[74]  M. Rappaz,et al.  Local temperature response to pulsed discharges in electronic discharge machining (EDM) environment , 2005, IEEE Transactions on Plasma Science.

[75]  Mukund R. Patel,et al.  Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model , 1989 .

[76]  D. Schram,et al.  Radiative energy loss in a two-temperature argon plasma , 1991 .

[77]  O. Živný,et al.  Database system of thermodynamic properties of individual substances at high temperatures , 2005 .

[78]  P. Gibbon,et al.  Introduction to Plasma Physics , 2017, 2007.04783.

[79]  Stephen Buckman,et al.  Electron-molecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules , 2002 .

[80]  A. Descoeudres Characterization of electrical discharge machining plasmas , 2006 .

[81]  Y. Itikawa,et al.  Cross Sections for Collisions of Electrons and Photons with Atomic Oxygen , 1990 .

[82]  Sydney Geltman,et al.  Single- and Double-Quantum Photodetachment of Negative Ions , 1967 .

[83]  C. Niemann Plasma diagnostics of discharge channels for neutralized ion beam transport , 2002 .

[84]  J. Menart,et al.  Coupled radiative, flow and temperature-field analysis of a free-burning arc , 2000 .

[85]  Pei-Jen Wang,et al.  Semi-empirical Model on Work Removal and Tool Wear in Electrical Discharge Machining , 2001 .

[86]  Richard E. DeVor,et al.  Characterization of plasma in micro-EDM discharge using optical spectroscopy , 2009 .

[87]  Alain Gleizes,et al.  Calculation of net emission coefficient of thermal plasmas in mixtures of gas with metallic vapour , 1993 .

[88]  Kamlakar P Rajurkar,et al.  A Stochastic Approach to Thermal Modeling Applied to Electro-Discharge Machining , 1983 .

[89]  M. Bettega,et al.  Electron collisions with isomers of C4H8 and C4H10 , 2004 .

[90]  Mukund R. Patel,et al.  Theoretical models of the electrical discharge machining process. II. The anode erosion model , 1989 .