Porphyrinoid f-Element Complexes.

Porphyrin and related pyrrole-containing macrocycles, collectively porphyrinoids, are versatile ligands that allow access to a multitude of coordination modes. Judicious modification of the porphyrin core as well as the pendant substituents has extended the coordination chemistry of porphyrinoids to include systems that are able to stabilize f-block element complexes with possible utility. This review focuses on our group's efforts to prepare expanded porphyrin and porphyrinogen ligands that can serve as tools to study and apply f-element metal coordination chemistry: it covers the background of the topic, selected syntheses, and application of these species in the chemical and medical sciences.

[1]  M. Tariq,et al.  Emerging Applications of Porphyrins and Metalloporphyrins in Biomedicine and Diagnostic Magnetic Resonance Imaging , 2018, Biosensors.

[2]  E. Schelter,et al.  Lanthanide Photocatalysis. , 2018, Accounts of chemical research.

[3]  M. D. Moore,et al.  Synthesis and characterization of an amethyrin-uranyl complex displaying aromatic character , 2018 .

[4]  J. Sessler,et al.  Lanthanide Texaphyrins as Photocatalysts. , 2018, Inorganic chemistry.

[5]  P. Carroll,et al.  Functional Synthetic Model for the Lanthanide-Dependent Quinoid Alcohol Dehydrogenase Active Site. , 2017, Journal of the American Chemical Society.

[6]  Jean-Claude G. Bünzli,et al.  Rising Stars in Science and Technology: Luminescent Lanthanide Materials , 2017 .

[7]  M. D. Moore,et al.  Synthesis and Characterization of a Binuclear Copper(II) Naphthoisoamethyrin Complex Displaying Weak Antiferromagnetic Coupling. , 2017, Inorganic chemistry.

[8]  O. Walter,et al.  Organometallic Neptunium Chemistry. , 2017, Chemical reviews.

[9]  M. D. Moore,et al.  Naphthylbipyrrole-Containing Amethyrin Analogue: A New Ligand for the Uranyl (UO22+) Cation. , 2017, Inorganic chemistry.

[10]  W. Wong-Ng,et al.  Structural Aspects of Porphyrins for Functional Materials Applications , 2017 .

[11]  H. Pellissier Recent developments in enantioselective lanthanide-catalyzed transformations , 2017 .

[12]  H. Gray,et al.  Fighting Cancer with Corroles. , 2017, Chemical reviews.

[13]  Vijayendra S. Shetti,et al.  Heteroatom-Containing Porphyrin Analogues. , 2017, Chemical reviews.

[14]  Y. Matano Synthesis of Aza-, Oxa-, and Thiaporphyrins and Related Compounds. , 2017, Chemical reviews.

[15]  H. Shinokubo,et al.  Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. , 2017, Chemical reviews.

[16]  P. Ballester,et al.  A Metal–Organic Framework Based on a Tetra-Arylextended Calix[4]pyrrole Ligand: Structure Control through the Covalent Connectivity of the Linker , 2017 .

[17]  J. Sessler,et al.  Activation of Platinum(IV) Prodrugs By Motexafin Gadolinium as a Redox Mediator. , 2016, Angewandte Chemie.

[18]  R. Caciuffo,et al.  Organometallic neptunium(III) complexes. , 2016, Nature chemistry.

[19]  T. Brocksom,et al.  Porphyrins as Catalysts in Scalable Organic Reactions , 2016, Molecules.

[20]  H. Gray,et al.  Lanthanides: Applications in Cancer Diagnosis and Therapy. , 2016, Journal of medicinal chemistry.

[21]  Konstantin Nikolaou,et al.  25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives , 2016, Advances in Therapy.

[22]  M. Eisen,et al.  Catalytic Organic Transformations Mediated by Actinide Complexes , 2015 .

[23]  S. Liddle The Renaissance of Non-Aqueous Uranium Chemistry. , 2015, Angewandte Chemie.

[24]  H. Wolterbeek,et al.  A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters? , 2015, Pharmaceuticals.

[25]  J. T. Lee,et al.  Recent Advancements in Calix[4]pyrrole‐Based Anion‐Receptor Chemistry , 2015 .

[26]  Yanli Zhao,et al.  Macrocycle-based metal-organic frameworks , 2015 .

[27]  E. Schelter,et al.  DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme. , 2015, Chemistry.

[28]  J. Bünzli Review: Lanthanide coordination chemistry: from old concepts to coordination polymers , 2014 .

[29]  J. Sessler,et al.  Calix[4]pyrrole-based ion pair receptors. , 2014, Accounts of chemical research.

[30]  Y. Sung,et al.  A hybrid macrocycle with a pyridine subunit displays aromatic character upon uranyl cation complexation. , 2014, Journal of the American Chemical Society.

[31]  Ashleigh L. Ward,et al.  Synthesis and characterization of thorium(IV) and uranium(IV) corrole complexes. , 2013, Journal of the American Chemical Society.

[32]  A. Sorokin Phthalocyanine metal complexes in catalysis. , 2013, Chemical reviews.

[33]  D. Gryko,et al.  Lanthanide corroles: a new class of macrocyclic lanthanide complexes. , 2013, Chemical communications.

[34]  A. Gaunt,et al.  Recent developments in synthesis and structural chemistry of nonaqueous actinide complexes. , 2013, Chemical reviews.

[35]  D. Stevenson,et al.  Metalloporphyrins – An Update , 2012, Front. Pharmacol..

[36]  Jong Min Lim,et al.  Cyclo[m]pyridine[n]pyrroles: hybrid macrocycles that display expanded π-conjugation upon protonation. , 2012, Journal of the American Chemical Society.

[37]  A. Osuka,et al.  Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.

[38]  J. Sessler,et al.  Overcoming biochemical pharmacologic mechanisms of platinum resistance with a texaphyrin-platinum conjugate. , 2011, Bioorganic & medicinal chemistry letters.

[39]  J. Sessler,et al.  Texaphyrins: tumor localizing redox active expanded porphyrins. , 2011, Anti-cancer agents in medicinal chemistry.

[40]  R. Caciuffo,et al.  Synthesis of bimetallic uranium and neptunium complexes of a binucleating macrocycle and determination of the solid-state structure by magnetic analysis. , 2010, Inorganic chemistry.

[41]  J. Sessler,et al.  Gadolinium texaphyrin (Gd-Tex)-malonato-platinum conjugates: synthesis and comparison with carboplatin in normal and Pt-resistant cell lines. , 2009, Dalton transactions.

[42]  Y. Matano,et al.  Phosphole-containing calixpyrroles, calixphyrins, and porphyrins: synthesis and coordination chemistry. , 2009, Accounts of chemical research.

[43]  A. Tsivadze,et al.  Supramolecular chemistry of metalloporphyrins. , 2009, Chemical reviews.

[44]  V. Lynch,et al.  Binuclear organometallic ruthenium complexes of a Schiff base expanded porphyrin. , 2008, Chemical communications.

[45]  Patricia J. Melfi,et al.  Immobilization of a hexaphyrin(1.0.1.0.0.0) derivative onto a tentagel-amino resin and its use in uranyl cation detection. , 2008, Dalton transactions.

[46]  V. Lynch,et al.  Binuclear fluoro-bridged zinc and cadmium complexes of a schiff base expanded porphyrin: fluoride abstraction from the tetrafluoroborate anion. , 2007, Inorganic chemistry.

[47]  Patricia J. Melfi,et al.  Redox behavior of cyclo[6]pyrrole in the formation of a uranyl complex. , 2007, Inorganic chemistry.

[48]  Z. Gross,et al.  Corrole-based applications. , 2007, Chemical communications.

[49]  D. Khuntia,et al.  Motexafin gadolinium injection for the treatment of brain metastases in patients with non-small cell lung cancer , 2007, International journal of nanomedicine.

[50]  V. Lynch,et al.  Coordination of oxovanadium(V) in an expanded porphyrin macrocyclet. , 2006, Chemical communications.

[51]  Patricia J. Melfi,et al.  Schiff base oligopyrrolic macrocycles as ligands for lanthanides and actinides , 2006 .

[52]  J. Sessler,et al.  Synthesis and Structure of Non-aromatic Porphyrinoid Schiff-base Macrocycles Bearing Thiophene , 2006 .

[53]  S. Fricker The therapeutic application of lanthanides. , 2006, Chemical Society reviews.

[54]  V. Lynch,et al.  Positive homotropic allosteric binding of silver(I) cations in a Schiff base oligopyrrolic macrocycle. , 2006, Journal of the American Chemical Society.

[55]  Xuebo Chen,et al.  Density functional theory studies of actinide(III) motexafins (An-Motex2+, An = Ac, Cm, Lr). Structure, stability, and comparison with lanthanide(III) motexafins. , 2006, Inorganic chemistry.

[56]  V. Lynch,et al.  Synthesis and anion binding properties of 2,5-diamidothiophene polypyrrole Schiff base macrocycles. , 2005, Organic letters.

[57]  V. Lynch,et al.  Calix[4]pyrrole Schiff base macrocycles: novel binucleating ligands for Cu(I) and Cu(II). , 2005, Inorganic chemistry.

[58]  J. Sessler,et al.  Gadolinium texaphyrin-methotrexate conjugates. Towards improved cancer chemotherapeutic agents. , 2005, Organic & biomolecular chemistry.

[59]  V. Lynch,et al.  A Schiff base expanded porphyrin macrocycle that acts as a versatile binucleating ligand for late first-row transition metals. , 2005, Inorganic chemistry.

[60]  Patricia J. Melfi,et al.  Hexaphyrin(1.0.1.0.0.0). A new colorimetric actinide sensor , 2004 .

[61]  D. Seyferth Uranocene. The first member of a new class of organometallic derivatives of the f elements , 2004 .

[62]  V. Lynch,et al.  Calix[4]pyrrole Schiff base macrocycles. Novel binucleating ligands for mu-oxo iron complexes. , 2004, Inorganic chemistry.

[63]  J. Sessler,et al.  Synthetic expanded porphyrin chemistry. , 2003, Angewandte Chemie.

[64]  V. Lynch,et al.  Formation and properties of cyclo[6]pyrrole and cyclo[7]pyrrole. , 2003, Journal of the American Chemical Society.

[65]  J. Sessler,et al.  Motexafin gadolinium reacts with ascorbate to produce reactive oxygen species. , 2002, Chemical communications.

[66]  Masakatsu Shibasaki,et al.  Lanthanide complexes in multifunctional asymmetric catalysis. , 2002, Chemical reviews.

[67]  J. Sessler,et al.  Probing the reactivity of the radiation sensitizer motexafin gadolinium (Xcytrin®) and a series of lanthanide(III) analogues in the presence of both hydroxyl radicals and aqueous electrons , 2001 .

[68]  J. Sessler,et al.  Pulse radiolytic studies of metallotexaphyrins in the presence of oxygen: Relevance of the equilibrium with superoxide anion to the mechanism of action of the radiation sensitizer motexafin gadolinium (Gd-Tex2+, xcytrin) , 2001 .

[69]  J. Sessler,et al.  One-electron reduction and oxidation studies of the radiation sensitizer gadolinium(III) texaphyrin (PCI-0120) and other water soluble metallotexaphyrins , 1999 .

[70]  V. Lynch,et al.  SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF THE FIRST SCHIFF-BASE MACROCYCLES CONTAINING TERPYRROLE SUBUNITS , 1998 .

[71]  David Dolphin,et al.  Expanded Porphyrins and Their Heterologs. , 1997, Chemical reviews.

[72]  J. Sessler,et al.  Metal Complex Conjugates of Antisense DNA Which Display Ribozyme-Like Activity , 1997 .

[73]  R A Miller,et al.  Phototherapy of cancer and atheromatous plaque with texaphyrins. , 1996, Journal of clinical laser medicine & surgery.

[74]  J. Sessler,et al.  Gadolinium(III) texaphyrin: a tumor selective radiation sensitizer that is detectable by MRI. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Sessler,et al.  Lutetium Texaphyrin (PCI‐0123): A Near‐Infrared, Water‐Soluble Photosensitizer , 1996, Photochemistry and photobiology.

[76]  Philip A. Gale,et al.  Calix[4]pyrroles:  Old Yet New Anion-Binding Agents , 1996 .

[77]  V. Lynch,et al.  The template synthesis and X-ray characterization of pyrrole-derived hexadentate uranyl(VI) Schiff-base macrocyclic complexes , 1996 .

[78]  R. Muller,et al.  Nuclear magnetic relaxation dispersion studies of water‐soluble gadolinium(iii)‐texaphyrin complexes , 1995, Journal of magnetic resonance imaging : JMRI.

[79]  B. Franck,et al.  Novel Porphyrinoids for Chemistry and Medicine by Biomimetic Syntheses , 1995 .

[80]  J. Sessler,et al.  13C and 31P NMR Study of Paramagnetic Lanthanide(III) Texaphyrins , 1995 .

[81]  V. Lynch,et al.  Synthesis and x-ray Structure of Selenasapphyrin , 1995 .

[82]  V. Lynch,et al.  Hexaalkyl Terpyrrole: A New Building Block for the Preparation of Expanded Porphyrins , 1995 .

[83]  J. Sessler,et al.  SEQUENCE-SPECIFIC PHOTOCLEAVAGE OF DNA BY AN EXPANDED PORPHYRIN WITH IRRADIATION ABOVE 700 NM , 1995 .

[84]  V. Lynch,et al.  1H NMR Spectroscopic Study of Paramagnetic Lanthanide(III) Texaphyrins. Effect of Axial Ligation , 1995 .

[85]  J. Sessler,et al.  SITE-SPECIFIC HYDROLYSIS OF RNA BY EUROPIUM(III) TEXAPHYRIN CONJUGATED TO A SYNTHETIC OLIGODEOXYRIBONUCLEOTIDE , 1994 .

[86]  Scott R. Wilson,et al.  BIS(PORPHYRIN)ACTINIDE COMPLEXES AND THEIR RADICAL CATIONS AND DICATIONS , 1994 .

[87]  J. Sessler,et al.  Preclinical Evaluation of Gadolinium (III) Texaphyrin Complex: A New Paramagnetic Contrast Agent for Magnetic Resonance Imaging , 1994, Investigative radiology.

[88]  Jonathan L. Sessler,et al.  Texaphyrins: Synthesis and Applications , 1994 .

[89]  Jonathan L. Sessler,et al.  Gadolinium(III) texaphyrin : a novel MRI contrast agent , 1993 .

[90]  K. Kadish,et al.  Double-Decker actinide porphyrins and phthalocyanines. Synthesis and spectroscopic characterization of neutral, oxidized, and reduced homo- and heteroleptic complexes , 1993 .

[91]  V. Lynch,et al.  Synthesis and structural characterization of lanthanide(III) texaphyrins , 1993 .

[92]  V. Lynch,et al.  Neutral substrate complexation by an "expanded porphyrin" , 1993 .

[93]  V. Lynch,et al.  Diprotonated sapphyrin: A fluoride selective halide anion receptor , 1992 .

[94]  V. Lynch,et al.  A Nonaromatic Expanded Porphyrin Derived from Anthracene—A Macrocycle which Unexpectedly Binds Anions , 1992 .

[95]  V. Lynch,et al.  Synthesis and x-ray characterization of a uranyl(VI) Schiff base complex derived from a 2:2 condensation product of 3,4-diethylpyrrole-2,5-dicarbaldehyde and 1,2-diamino-4,5-dimethoxybenzene , 1992 .

[96]  J. Sessler,et al.  Phosphate anion binding : enhanced transport of nucleotide monophosphates using a sapphyrin carrier , 1991 .

[97]  V. Lynch,et al.  Uranylpentaphyrin: an actinide complex of an expanded porphyrin , 1991 .

[98]  James L. Matthews,et al.  Tripyrroledimethine-derived ("texaphyrin"-type) macrocycles: potential photosensitizers which absorb in the far-red spectral region , 1991, Photonics West - Lasers and Applications in Science and Engineering.

[99]  T. Mallouk,et al.  Effects of substituents on the spectral and redox properties of cadmium(II) texaphyrins , 1990 .

[100]  Tran C. Chanh,et al.  Photodynamic inactivation of enveloped viruses using sapphyrin, a 22 pi-electron expanded porphyrin: possible approaches to prophylactic blood purification protocols , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[101]  J. Sessler,et al.  In vitro photodynamic activity of diprotonated sapphyrin: a 22-.pi.-electron pentapyrrolic porphyrin-like macrocycle , 1990 .

[102]  E. Legoff,et al.  A general synthetic route to 2,2 prime :5 prime ,2 double prime -terpyrrole, 2,5-bis(2-pyrryl)thiophene, and alkyl-substituted analogues , 1990 .

[103]  V M Runge,et al.  Gd DTPA: a review of clinical indications in central nervous system magnetic resonance imaging. , 1989, Radiographics : a review publication of the Radiological Society of North America, Inc.

[104]  J. Sessler,et al.  A water-stable gadolinium(III) complex derived from a new pentadentate expanded porphyrin ligand , 1989 .

[105]  V. Lynch,et al.  Binding of pyridine and benzimidazole to a cadmium "expanded porphyrin": solution and x-ray structural studies , 1989 .

[106]  Martin R. Johnson,et al.  Expanded porphyrins: The synthesis and metal binding properties of novel tripyrrane-containing macrocycles , 1988 .

[107]  J. Sessler,et al.  The coordination chemistry of planar pentadentate «porphyrin-like» ligands , 1988 .

[108]  K. Suslick,et al.  Actinide bis (porphyrinate) π-radical cations and dications, including the X-ray crystal structure of [(TPP)2Th][SbCl6] , 1988 .

[109]  R. Lauffer,et al.  Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design , 1987 .

[110]  Martin R. Johnson,et al.  Synthesis and crystal structure of a novel tripyrrane-containing porphyrinogen-like macrocycle , 1987 .

[111]  K. Suslick,et al.  Synthesis and characterization of actinide mono- and bis(porphyrin) complexes , 1987 .

[112]  E. Legoff,et al.  Synthesis of a [1,5,1,5]platyrin, a 26.pi.-electron tetrapyrrolic annulene , 1987 .

[113]  S. H. Koenig,et al.  Tissue distribution and stability of metalloporphyrin MRI contrast agents , 1987, Magnetic resonance in medicine.

[114]  T. Bell,et al.  Torands: rigid toroidal macrocycles. Calcium sequestration by a member of this new ligand class , 1986 .

[115]  R. Guilard,et al.  Thorium and uranium porphyrins. Synthesis and crystal structure of bis(acetylacetonato)(2,3,7,8,12,13,17,18-octaethylporphyrinato)thorium(IV) , 1986 .

[116]  B. Franck,et al.  Synthesis of a Fourfold Enlarged Porphyrin with an Extremely Large, Diamagnetic Ring‐Current Effect , 1986 .

[117]  R. Woodward,et al.  Sapphyrins: novel aromatic pentapyrrolic macrocycles , 1983 .

[118]  G. Newkome,et al.  18[Hexa(2,6)pyridinocoronand-6]: "Sexipyridine" , 1983 .

[119]  W. Horrocks,et al.  Water-soluble lanthanide porphyrins: shift reagents for aqueous solution , 1978 .

[120]  T. Marks,et al.  Large metal ion-centered template reactions. A uranyl complex of cyclopentakis(2-iminoisoindoline) , 1975 .

[121]  R. Ferrus,et al.  THE COORDINATION CHEMISTRY OF YTTRIUM AND THE RARE EARTH METAL IONS , 1965 .

[122]  J. E. Bloor,et al.  ORGANIC COMPLEXES OF URANIUM. PART I. THE SYNTHESIS AND SPECTRUM OF URANYL PHTHALOCYANINE , 1964 .

[123]  H. Rapoport,et al.  2,2':5',2″-Terpyrrole1a , 1964 .

[124]  A. Baeyer Ueber ein Condensationsproduct von Pyrrol mit Aceton , 1886 .

[125]  M. Ganjali,et al.  Lanthanide materials as chemosensors , 2018 .

[126]  T. Lash Carbaporphyrinoid Systems. , 2017, Chemical reviews.

[127]  Wenfang Sun,et al.  Near-Infrared Emission of Lanthanide(III) Texaphyrin Complexes , 2012, Journal of Inorganic and Organometallic Polymers and Materials.

[128]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.

[129]  J. Sessler,et al.  Synthesis and characterization of an oxasapphyrin-uranyl complex , 1998 .

[130]  J. Sessler,et al.  Texaphyrin-Based Nuclease Analogues. Rationally Designed Approaches to the Catalytic Cleavage of RNA and DNA Targets , 1996 .

[131]  E. Meijer,et al.  Well-Defined Oligo(pyrrole-2,5-diyl)s by the Ullmann Reaction , 1995 .

[132]  J. Sessler,et al.  Metal Carbonyl Complexes of Sapphyrins , 1991 .

[133]  J. Sessler,et al.  Enhanced transport of fluoride anion effected using protonated sapphyrin as a carrier , 1991 .

[134]  V. Lynch,et al.  Nucleophilic attack at the meso position of a uranyl sapphyrin complex , 1991 .

[135]  V. Lynch,et al.  Synthetic and structural studies of sapphyrin, a 22-π-electron pentapyrrolic expanded porphyrin , 1990 .

[136]  Martin R. Johnson,et al.  Synthesis and characterization of quinone-substituted octaalkyl porphyrin monomers and dimers , 1990 .

[137]  T. Mallouk,et al.  Metallotexaphyrins: a new family of photosensitisers for efficient generation of singlet oxygen , 1989 .

[138]  T. Mallouk,et al.  Ground- and excited-state spectral and redox properties of cadmium(II) texaphyrin , 1989 .

[139]  V. Lynch,et al.  An "expanded porphyrin": the synthesis and structure of a new aromatic pentadentate ligand , 1988 .

[140]  T. Marks,et al.  Large metal ion-centered template reactions. Chemical and spectral studies of the "superphthalocyanine" dioxocyclopentakis(1-iminoisoindolinato)uranium(VI) and its derivatives , 1978 .

[141]  D. Dolphin,et al.  Biochemical significance of porphyrin .pi. cation radicals , 1974 .

[142]  R. Grigg,et al.  Sulphur extrusion reactions applied to the synthesis of corroles and related systems , 1972 .

[143]  D. Graw,et al.  Radiochemische Untersuchungen an Phthalocyaninato-Actiniden-Komplexen , 1970 .