Soft parametric curve matching in scale-space

We develop a softassign method for application to curve matching. Softassign uses deterministic annealing to iteratively optimize the parameters of an energy function. It also incorporates outlier rejection by converting the energy into a stochastic matrix with entries for rejection probability. Previous applications of the method focused on finding transformations between unordered point sets. Thus, no topological constraints were required. In our application, we must consider the topology of the matching between the reference and the target curve. Our energy function also depends upon the rotation and scaling between the curves. Thus, we develop a topologically correct algorithm to update the arc length correspondence, which is then used to update the similarity transformation. We further enhance robustness by using a scale-space description of the curves. This results in a curve-matching tool that, given an approximate initialization, is invariant to similarity transformations. We demonstrate the reliability of the technique by applying it to open and closed curves extracted from real patient images (cortical sulci in three dimensions and corpora callosa in two dimensions). The set of transformations is then used to compute anatomical atlases.

[1]  Max A. Viergever,et al.  Measuring biological shape using geometry-based shape transformations , 2001, Image Vis. Comput..

[2]  Jorge S. Marques,et al.  Shape alignment -- Optimal initial point and pose estimation , 1997, Pattern Recognit. Lett..

[3]  U. Grenander,et al.  Curve Matching on Brain Surfaces Using Induced Frenet Distance Metrics , 2000 .

[4]  Jean-Philippe,et al.  First Steps towards Automatic Building of Anatomical Atlases , 1994 .

[5]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  A. C. Evans,et al.  A method to match human sulci in 3D-space , 1995, Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society.

[7]  Van Nostrand,et al.  Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm , 1967 .

[8]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[9]  Nicholas Ayache,et al.  Tracking Points on Deformable Objects Using Curvature Information , 1992, ECCV.

[10]  James S. Duncan,et al.  A Robust Point Matching Algorithm for Autoradiograph Alignment , 1996, VBC.

[11]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[12]  Laurent Younes,et al.  Computable Elastic Distances Between Shapes , 1998, SIAM J. Appl. Math..

[13]  Anand Rangarajan,et al.  A new algorithm for non-rigid point matching , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[14]  Shinji Umeyama Parameterized Point Pattern Matching and Its Application to Recognition of Object Families , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[16]  Alok Gupta,et al.  Dynamic Programming for Detecting, Tracking, and Matching Deformable Contours , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  John S. Duncan,et al.  Pointwise tracking of left-ventricular motion in 3D , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[18]  Ramesh C. Jain,et al.  Using Dynamic Programming for Solving Variational Problems in Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hemant D. Tagare,et al.  A geometric criterion for shape-based non-rigid correspondence , 1995, Proceedings of IEEE International Conference on Computer Vision.

[20]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Alain Trouvé,et al.  On a Class of Diffeomorphic Matching Problems in One Dimension , 2000, SIAM J. Control. Optim..

[23]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Philip N. Klein,et al.  Constructing 2D curve atlases , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).

[25]  Tyng-Luh Liu,et al.  Approximate tree matching and shape similarity , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[27]  Timothy F. Cootes,et al.  An Efficient Method for Constructing Optimal Statistical Shape Models , 2001, MICCAI.

[28]  Edward J. Delp,et al.  Partial Shape Recognition: A Landmark-Based Approach , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Nicholas Ayache,et al.  Smoothing and matching of 3-d space curves , 1992, Other Conferences.