Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

[1]  D. Dionysiou,et al.  Environmental application of millimetre-scale sponge iron (s-Fe⁰) particles (I): pretreatment of cationic triphenylmethane dyes. , 2015, Journal of hazardous materials.

[2]  Tinglin Huang,et al.  Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. , 2014, Journal of hazardous materials.

[3]  G. Schoups,et al.  Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements. , 2014, Journal of hazardous materials.

[4]  Fenglian Fu,et al.  The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. , 2014, Journal of hazardous materials.

[5]  Yunhong Zhang,et al.  Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles , 2014 .

[6]  Yang-hsin Shih,et al.  Adsorption and sequential degradation of polybrominated diphenyl ethers with zerovalent iron. , 2013, Journal of hazardous materials.

[7]  Jianguo Liu,et al.  Rapid degradation of hexachlorobenzene by micron Ag/Fe bimetal particles. , 2013, Journal of environmental sciences.

[8]  Yuh-fan Su,et al.  Effects of various ions on the dechlorination kinetics of hexachlorobenzene by nanoscale zero-valent iron. , 2012, Chemosphere.

[9]  W. Braida,et al.  Degradation of high energetic and insensitive munitions compounds by Fe/Cu bimetal reduction. , 2012, Journal of hazardous materials.

[10]  Lingyan Zhu,et al.  Simultaneous adsorption and degradation of γ-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. , 2011, Environmental pollution.

[11]  Ku-Fan Chen,et al.  Renewable hydrogen generation by bimetallic zero valent iron nanoparticles , 2011 .

[12]  Xinhua Xu,et al.  Kinetics of nitrate reductive denitrification by nanoscale zero-valent iron , 2010 .

[13]  C. Noubactep Elemental metals for environmental remediation: learning from cementation process. , 2010, Journal of hazardous materials.

[14]  Cheng Sun,et al.  Reductive degradation of tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation. , 2010, Chemosphere.

[15]  Jun Ma,et al.  Dechlorination of chloroacetic acids by Pd/Fe nanoparticles: Effect of drying method on metallic activity and the parameter optimization , 2010 .

[16]  J. Chen,et al.  Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. , 2009, Journal of hazardous materials.

[17]  C. Noubactep Comments on "Decontamination of solutions containing EDTA using metallic iron" by Gyliene O., et al. [J. Hazard. Mater. (2008)]. , 2009, Journal of hazardous materials.

[18]  M. Engelhard,et al.  Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. , 2009, Journal of the American Chemical Society.

[19]  On the operating mode of bimetallic systems for environmental remediation. , 2009, Journal of hazardous materials.

[20]  C. Noubactep Comments on "Decontamination of solutions containing EDTA using metallic iron" , 2009 .

[21]  Cheng Sun,et al.  Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication. , 2009, Journal of environmental sciences.

[22]  Jun Ma,et al.  Preparation and characterization of PAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. , 2008, Water research.

[23]  Cheng Sun,et al.  Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways. , 2008, The journal of physical chemistry. A.

[24]  Teik-Thye Lim,et al.  Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial Interactions. , 2008, Environmental science & technology.

[25]  D. Dionysiou,et al.  Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs , 2008 .

[26]  H. Lien,et al.  Nanoscale Pd/Fe bimetallic particles: Catalytic effects of palladium on hydrodechlorination , 2007 .

[27]  David M. Cwiertny,et al.  Exploring the influence of granular iron additives on 1,1,1-trichloroethane reduction. , 2006, Environmental science & technology.

[28]  Zhuoyong Zhang,et al.  Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. , 2006, Chemosphere.

[29]  Ruey-an Doong,et al.  Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. , 2006, Chemosphere.

[30]  David M. Cwiertny,et al.  Influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane. , 2006, Environmental science & technology.

[31]  S. Comfort,et al.  Accelerated remediation of pesticide-contaminated soil with zerovalent iron. , 2004, Environmental pollution.

[32]  K. M. Johnson,et al.  Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. , 2004, Environmental science & technology.

[33]  Qing X. Li,et al.  Reduction of nitroaromatic pesticides with zero-valent iron. , 2004, Chemosphere.

[34]  J. Khim,et al.  Kinetics of reductive denitrification by nanoscale zero-valent iron. , 2000, Chemosphere.

[35]  T. Mallouk,et al.  Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron , 2000 .