Convergence analysis of truncated incomplete Hessian Newton minimization method and application in biomolecular potential energy minimization

This paper gives a general convergence analysis to the truncated incomplete Hessian Newton method (T-IHN). It shows that T-IHN is globally convergent even with an indefinite incomplete Hessian matrix or an indefinite preconditioner, which may happen in practice. It also proves that when the T-IHN iterates are close enough to a minimum point, T-IHN has a Q-linear rate of convergence, and an admissible line search steplength of one. Moreover, a particular T-IHN algorithm is constructed for minimizing a biomolecular potential energy function, and numerically tested for a protein model problem based on a widely used molecular simulation package, CHARMM. Numerical results confirm the theoretical results, and demonstrate that T-IHN can have a better performance (in terms of computer CPU time) than most CHARMM minimizers.

[1]  R. Sundaram A First Course in Optimization Theory: Optimization in ℝ n , 1996 .

[2]  Trond Steihaug,et al.  Truncated-newtono algorithms for large-scale unconstrained optimization , 1983, Math. Program..

[3]  David J. Thuente,et al.  Line search algorithms with guaranteed sufficient decrease , 1994, TOMS.

[4]  Philip E. Gill,et al.  Newton-type methods for unconstrained and linearly constrained optimization , 1974, Math. Program..

[5]  Tamar Schlick,et al.  Molecular Modeling and Simulation: An Interdisciplinary Guide , 2010 .

[6]  Nathan A. Baker,et al.  Improving implicit solvent simulations: a Poisson-centric view. , 2005, Current opinion in structural biology.

[7]  Ernest R. Davidson,et al.  Molecular Mechanics and Modeling: Overview , 1993 .

[8]  Dexuan Xie,et al.  A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation , 2007 .

[9]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[10]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[11]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[12]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[13]  Tamar Schlick,et al.  Remark on Algorithm 702—the updated truncated Newton minimization package , 1999, TOMS.

[14]  Dexuan Xie An Effective Compressed Sparse Preconditioner for Large Scale Biomolecular Simulations , 2004, CIS.

[15]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[16]  B. Brooks,et al.  A super-linear minimization scheme for the nudged elastic band method , 2003 .

[17]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[18]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[19]  Tamar Schlick,et al.  TNPACK—A truncated Newton minimization package for large-scale problems: I. Algorithm and usage , 1992, TOMS.

[20]  Tamar Schlick,et al.  A More Lenient Stopping Rule for Line Search Algorithms , 2002, Optim. Methods Softw..

[21]  Tamar Schlick,et al.  Geometry Optimization: 2 , 2002 .

[22]  P. Pardalos,et al.  Optimization in computational chemistry and molecular biology : local and global approaches , 2000 .

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[25]  Tamar Schlick,et al.  Visualization of Chemical Databases Using the Singular Value Decomposition and Truncated-Newton Minimization , 2000 .

[26]  Qin Ni,et al.  An incomplete Hessian Newton minimization method and its application in a chemical database problem , 2009, Comput. Optim. Appl..

[27]  Tamar Schlick,et al.  Efficient Implementation of the Truncated-Newton Algorithm for Large-Scale Chemistry Applications , 1999, SIAM J. Optim..

[28]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[29]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[30]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[31]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[32]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000 .

[33]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[34]  Dexuan Xie,et al.  Principal component analysis combined with truncated-Newton minimization for dimensionality reduction of chemical databases , 2003, Math. Program..

[35]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[36]  Tamar Schlick,et al.  A truncated Newton minimizer adapted for CHARMM and biomolecular applications , 1994, J. Comput. Chem..

[37]  Alexander D. MacKerell,et al.  All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000, J. Comput. Chem..