Sharp oracle inequalities for Least Squares estimators in shape restricted regression
暂无分享,去创建一个
[1] Mary C. Meyer,et al. ON THE DEGREES OF FREEDOM IN SHAPE-RESTRICTED REGRESSION , 2000 .
[2] Cun-Hui Zhang. Risk bounds in isotonic regression , 2002 .
[3] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.
[4] J. Wellner,et al. Estimation of a k-monotone density: limit distribution theory and the Spline connection , 2005, math/0509081.
[5] J. Wellner,et al. Entropy estimate for high-dimensional monotonic functions , 2005, math/0512641.
[6] P. Bartlett,et al. Empirical minimization , 2006 .
[7] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[8] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[9] Jean-Yves Audibert. No fast exponential deviation inequalities for the progressive mixture rule , 2007 .
[10] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[11] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[12] V. Koltchinskii,et al. Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.
[13] Fadoua Balabdaoui,et al. Estimation of a k‐monotone density: characterizations, consistency and minimax lower bounds , 2010, Statistica Neerlandica.
[14] A. Tsybakov,et al. Exponential Screening and optimal rates of sparse estimation , 2010, 1003.2654.
[15] A. Dalalyan,et al. Sharp Oracle Inequalities for Aggregation of Affine Estimators , 2011, 1104.3969.
[16] Karthik Sridharan,et al. Empirical Entropy, Minimax Regret and Minimax Risk , 2013, ArXiv.
[17] Adityanand Guntuboyina,et al. Global risk bounds and adaptation in univariate convex regression , 2013, 1305.1648.
[18] Tong Zhang,et al. Aggregation of Affine Estimators , 2013, ArXiv.
[19] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[20] Joel A. Tropp,et al. Living on the edge: phase transitions in convex programs with random data , 2013, 1303.6672.
[21] Y. Plan,et al. High-dimensional estimation with geometric constraints , 2014, 1404.3749.
[22] A. Tsybakov. Aggregation and minimax optimality in high-dimensional estimation , 2014 .
[23] S. Chatterjee. A new perspective on least squares under convex constraint , 2014, 1402.0830.
[24] R. Vershynin. Estimation in High Dimensions: A Geometric Perspective , 2014, 1405.5103.
[25] Adityanand Guntuboyina,et al. On risk bounds in isotonic and other shape restricted regression problems , 2013, 1311.3765.
[26] Pierre C. Bellec,et al. Sharp oracle bounds for monotone and convex regression through aggregation , 2015, J. Mach. Learn. Res..
[27] Adityanand Guntuboyina,et al. On matrix estimation under monotonicity constraints , 2015, 1506.03430.
[28] Babak Hassibi,et al. Asymptotically Exact Denoising in Relation to Compressed Sensing , 2013, ArXiv.
[29] P. Rigollet,et al. Optimal rates of statistical seriation , 2016, Bernoulli.
[30] J. Lafferty,et al. Adaptive risk bounds in unimodal regression , 2015, Bernoulli.