Random Walks That Find Perfect Objects and the Lovasz Local Lemma
暂无分享,去创建一个
[1] Wesley Pegden,et al. An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..
[2] Aldo Procacci,et al. An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.
[3] Joel H. Spencer,et al. Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..
[4] Wesley Pegden,et al. Highly nonrepetitive sequences: Winning strategies from the local lemma , 2010, Random Struct. Algorithms.
[5] Andrzej Dudek,et al. Rainbow Hamilton Cycles in Uniform Hypergraphs , 2012, Electron. J. Comb..
[6] Aravind Srinivasan,et al. A constructive algorithm for the Lovász Local Lemma on permutations , 2014, SODA.
[7] Mario Szegedy. The Lovász Local Lemma - A Survey , 2013, CSR.
[8] Dimitris Achlioptas,et al. The Lovász Local Lemma as a Random Walk , 2014, ArXiv.
[9] Jan Vondrák,et al. An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[10] Linyuan Lu,et al. Quest for Negative Dependency Graphs , 2012 .
[11] Christian Scheideler,et al. Coloring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000, SODA '00.
[12] Robin A. Moser. A constructive proof of the Lovász local lemma , 2008, STOC '09.
[13] P. Erdos-L Lovász. Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .
[14] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[15] Artur Czumaj,et al. Coloring nonuniform hypergraphs: a new algorithmic approach to the general Lovász local lemma , 2000 .
[16] József Beck,et al. An Algorithmic Approach to the Lovász Local Lemma. I , 1991, Random Struct. Algorithms.
[17] Noga Alon,et al. A Parallel Algorithmic Version of the Local Lemma , 1991, Random Struct. Algorithms.
[18] Jakub Przybylo,et al. Can Colour-Blind Distinguish Colour Palettes? , 2013, Electron. J. Comb..
[19] Andrzej Dudek,et al. Extensions of Results on Rainbow Hamilton Cycles in Uniform Hypergraphs , 2015, Graphs Comb..
[20] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[21] Karthekeyan Chandrasekaran,et al. Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.
[22] Dan Suciu,et al. Journal of the ACM , 2006 .
[23] Austin Tyler Mohr. Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs , 2013 .
[24] Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma , 2008, SODA '08.
[25] Bruce A. Reed,et al. Vertex colouring edge partitions , 2005, J. Comb. Theory B.
[26] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[27] Mario Szegedy,et al. A Sharper Local Lemma with Improved Applications , 2012, APPROX-RANDOM.
[28] Mario Szegedy,et al. Moser and tardos meet Lovász , 2011, STOC.
[29] P. Diaconis,et al. The cutoff phenomenon in finite Markov chains. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[30] James B. Shearer,et al. On a problem of spencer , 1985, Comb..
[31] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[32] Aravind Srinivasan,et al. New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.