Noramlization of porous active surfaces

Surface area normalization of different electrocatalytic materials for fuel cell applications is of fundamental importance for the comparison of different electrode materials. In this chapter we discuss the methodology for surface area normalization using adsorbed probe molecules. Specifically the methodology using adsorption–desorption of hydrogen and carbon monoxide for normalization of active surface areas is discussed. The method entails the determination of the amount of the probe molecule adsorbed on the surface using different methods. Cyclic voltammetry can be used for both hydrogen and CO. In situ infrared spectroscopy and on line mass spectrometry can be used in addition for CO. The surface coverage of hydrogen and CO is discussed for different single crystal electrode surfaces in order to support the use of these methods. Keywords: true surface; porous catalysts; probe molecules; hydrogen; carbon monoxide; normalization of reaction rates; cyclic voltammetry; in situ IR; differential electrochemical mass spectrometry

[1]  A. Wiȩckowski,et al.  Infrared reflection–absorption properties of platinum nanoparticle films on metal electrode substrates: control of anomalous optical effects , 2001 .

[2]  W. Farneth,et al.  Quantitative determination of the number of active surface sites and the turnover frequencies for methanol oxidation over metal oxide catalysts: I. Fundamentals of the methanol chemisorption technique and application to monolayer supported molybdenum oxide catalysts , 2000 .

[3]  G. Ertl,et al.  Electro-oxidation of CO at the Ru(0001) single-crystal electrode surface , 2000 .

[4]  M. J. Weaver,et al.  Spatial structure of ordered electrochemical adlayers from in situ scanning tunneling microscopy and infrared spectroscopy: single-site carbon monoxide binding on iridium(111) and comparisons with related systems , 2000 .

[5]  T. Iwasita,et al.  Performance evaluation of porous electrocatalysts via normalization of the active surface , 2000 .

[6]  De‐Yin Wu,et al.  Raman spectroscopic and quantum chemical study of hydrogen adsorption at platinum electrodes , 1999 .

[7]  M. J. Weaver,et al.  Coverage-dependent infrared spectroscopy of carbon monoxide on palladium(100) in aqueous solution : Adlayer phase transitions and electrooxidation pathways , 1999 .

[8]  M. J. Weaver,et al.  Coverage-Dependent Infrared Spectroscopy of Carbon Monoxide on Iridium(111) in Aqueous Solution: A Benchmark Comparison between Chemisorption in Ordered Electrochemical and Ultrahigh-Vacuum Environments , 1998 .

[9]  M. J. Weaver,et al.  Validity of double-layer charge-corrected voltammetry for assaying carbon monoxide coverages on ordered transition metals: comparisons with adlayer structures in electrochemical and ultrahigh vacuum environments , 1998 .

[10]  M. J. Weaver Potentials of Zero Charge for Platinum(111)−Aqueous Interfaces: A Combined Assessment from In-Situ and Ultrahigh-Vacuum Measurements , 1998 .

[11]  M. J. Weaver,et al.  Electrochemical Infrared Studies of Monocrystalline Iridium Surfaces. Part 2: Carbon Monoxide and Nitric Oxide Adsorption on Ir(110) , 1998 .

[12]  A. Arvia,et al.  The possible existence of subsurface H-atom adsorbates and H2 electrochemical evolution reaction intermediates on platinum in acid solutions , 1998 .

[13]  M. J. Weaver,et al.  Infrared spectroscopy of carbon monoxide at the ordered palladium (110)-aqueous interface : evidence for adsorbate-induced surface reconstruction , 1998 .

[14]  G. Jerkiewicz Hydrogen sorption ATIN electrodes , 1998 .

[15]  X. Xia,et al.  Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge , 1996 .

[16]  A. Tadjeddine,et al.  Vibrational spectroscopy of the electrochemical interface by visible infrared sum frequency generation , 1996 .

[17]  W. H. Weinberg,et al.  The adsorption of CO on Ir(111) investigated with FT-IRAS , 1996 .

[18]  X. Xia,et al.  Structural effects and reactivity in methanol oxidation on polycrystalline and single crystal platinum , 1996 .

[19]  Paul A. Christensen,et al.  The electrochemical oxidation of methanol on platinum and platinum + ruthenium particulate electrodes studied by in-situ FTIR spectroscopy and electrochemical mass spectrometry , 1996 .

[20]  T. Iwasita,et al.  In‐Situ Fourier Transform Infrared Spectroscopy: A Tool to Characterize the Metal‐Electrolyte Interface at a Molecular Level , 1995 .

[21]  A. Shukla,et al.  Methanol electrooxidation on carbon-supported Pt-WO3−x electrodes in sulphuric acid electrolyte , 1995 .

[22]  H. Gasteiger,et al.  H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects , 1995 .

[23]  J. Clavilier,et al.  Detailed analysis of the voltammetry of Rh(111) in perchloric acid solution , 1994 .

[24]  I. Villegas,et al.  Carbon monoxide adlayer structures on platinum (111) electrodes: A synergy between in‐situ scanning tunneling microscopy and infrared spectroscopy , 1994 .

[25]  T. Iwasita,et al.  Vibrational spectroscopy of adsorbed sulfate on Pt(111) , 1994 .

[26]  N. Batina,et al.  On the stability of reconstructed Pt(100) in an electrochemical cell : an ex-situ LEED/RHEED and in-situ STM study , 1994 .

[27]  E. Ticianelli,et al.  Application of the Flooded‐Agglomerate Model to Study Oxygen Reduction on Thin Porous Coating Rotating Disk Electrode , 1994 .

[28]  Hubert A. Gasteiger,et al.  Carbon monoxide electrooxidation on well-characterized platinum-ruthenium alloys , 1994 .

[29]  Hubert A. Gasteiger,et al.  Methanol electrooxidation on well-characterized Pt-Ru alloys , 1993 .

[30]  A. Wiȩckowski,et al.  Evaluation of absolute saturation coverages of carbon monoxide on ordered low-index platinum and rhodium electrodes , 1992 .

[31]  A. Aldaz,et al.  Electrochemical behaviour of CO layers formed by solution dosing at open circuit on Pt(111). Voltammetric determination of CO coverages at full hydrogen adsorption blocking in various acid media , 1992 .

[32]  Zuzana Kováčová,et al.  Application of the ac admittance technique to double-layer studies on polycrystalline gold electrodes , 1992 .

[33]  M. J. Weaver,et al.  Atomic-resolution scanning tunneling microscopy and infrared spectroscopy as combined in situ probes of electrochemical adlayer structure: carbon monoxide on rhodium (111) , 1991 .

[34]  J. Clavilier,et al.  Electrochemistry at platinum single crystal surfaces in acidic media : hydrogen and oxygen adsorption , 1991 .

[35]  D. Armand,et al.  A simple theoretical model for the hydrogen electrosorption on platinum in acid medium , 1991 .

[36]  O. Petrii,et al.  Real surface area measurements in electrochemistry , 1991 .

[37]  M. J. Weaver,et al.  Coverage- and potential-dependent binding geometries of carbon monoxide at ordered low-index platinum- and rhodium-aqueous interfaces: comparisons with adsorption in corresponding metal-vacuum environments , 1990 .

[38]  T. Iwasita,et al.  An FTIR study of the catalytic activity of a 85:15 Pt:Ru alloy for methanol oxidation. , 1990 .

[39]  U. Rammelt,et al.  On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes , 1990 .

[40]  M. J. Weaver,et al.  In situ infrared spectroscopy of carbon monoxide adsorbed at ordered platinum(100)-aqueous interfaces: double-layer effects upon the adsorbate binding geometry , 1990 .

[41]  M. J. Weaver,et al.  In-situ infrared spectroscopy of CO adsorbed at ordered Pt(110)-aqueous interfaces , 1990 .

[42]  M. J. Weaver,et al.  Coverage‐dependent dipole coupling for carbon monoxide adsorbed at ordered platinum(111)‐aqueous interfaces: Structural and electrochemical implications , 1990 .

[43]  A. Wiȩckowski,et al.  Comparison of voltammetry of vacuum-prepared Rh (100) and Rh (111) electrodes , 1990 .

[44]  M. J. Weaver,et al.  Comparisons between coverage-dependent infrared frequencies for carbon monoxide adsorbed on ordered platinum (111), (100), and (110) in electrochemical and ultrahigh-vacuum environments , 1989 .

[45]  M. J. Weaver,et al.  Electrochemical infrared spectroscopy of carbon monoxide on ordered rhodium (111): Comparisons with vibrational spectra on Pt(111) and in related surface–vacuum environments , 1989 .

[46]  G. Ritzoulis,et al.  The reduction of nitrous oxide on platinum electrodes in acid solution , 1989 .

[47]  Masatoki Ito,et al.  Adsorption site interconversion induced by electrode potential of carbon monoxide on the platinum(100) single-crystal electrode , 1988 .

[48]  A. Wiȩckowski,et al.  Single crystal radio-electrochemistry: adsorption of acetic acid on well-defined Pt (111) surfaces , 1988 .

[49]  M. J. Weaver,et al.  Single potential-alteration surface infrared spectroscopy: examination of absorbed species involved in irreversible electrode reactions , 1987 .

[50]  J. Clavilier,et al.  Quantitative analysis of the distribution of the hydrogen adsorption states at platinum surfaces: Part I. Application to Pt(100) in sulphuric acid medium , 1987 .

[51]  R. Durand,et al.  Ordered overlayer of lead obtained by underpotential deposition on Pt(100) , 1987 .

[52]  S. Motoo,et al.  Electrochemistry of iridium single crystal surfaces: Part I. Structural effect on formic acid oxidation and poison formation on Ir (111), (100) and (110) , 1986 .

[53]  S. Trasatti Structuring of the solvent at metal/solution interfaces and components of the electrode potential* , 1983 .

[54]  J. W. Russell,et al.  Structural investigation by infra-red spectroscopy of adsorbed hydrogen on platinum , 1982 .

[55]  C. Lamy,et al.  Electrocatalytic oxidation of methanol on single crystal platinum electrodes. Comparison with polycrystalline platinum , 1981 .

[56]  Gabor A. Somorjai,et al.  The surface reconstructions of the (100) crystal faces of iridium, platinum and gold. I. Experimental observations and possible structural models , 1981 .

[57]  O. Petrii,et al.  Potentials of Zero Charge , 1980 .

[58]  M. Breiter Dissolution and adsorption of hydrogen at smooth Pd wires at potentials of the alpha phase in sulfuric acid solution , 1977 .

[59]  P. Stonehart,et al.  Electrocatalysis on binary alloys , 1975 .

[60]  R. Woods Hydrogen adsorption on platinum, iridium and rhodium electrodes at reduced temperatures and the determination of real surface area , 1974 .

[61]  Ronald Woods,et al.  Limiting oxygen coverage on platinized platinum; Relevance to determination of real platinum area by hydrogen adsorption , 1971 .

[62]  O. Petry,et al.  Adsorption of ions and atoms on platinum-group metals☆ , 1970 .

[63]  F. Will Hydrogen Adsorption on Platinum Single Crystal Electrodes I . Isotherms and Heats of Adsorption , 1965 .

[64]  S. Gilman Measurement of hydrogen adsorption by the multipulse potentiodynamic (mpp) method , 1964 .

[65]  S. Gilman,et al.  A STUDY OF THE MECHANISM OF CARBON MONOXIDE ADSORPTION ON PLATINUM BY A NEW ELECTROCHEMICAL PROCEDURE1 , 1963 .

[66]  S. Gilman A STUDY OF THE ADSORPTION OF CARBON MONOXIDE AND OXYGEN ON PLATINUM. SIGNIFICANCE OF THE “POLARIZATION CURVE”1 , 1962 .

[67]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .