A feasibility study of using Langley 0.3-m transonic cryogenic tunnel sidewall boundary-layer removal system for heavy gas testing

This report presents the results of a preliminary study for using the 0.3-m Transonic Cryogenic Tunnel sidewall boundary-layer removal system with heavy gas sulfur hexafluoride as the test medium. It is shown that the drive motor speed/power of the existing system and the additional heat load on the tunnel heat exchanger are the major problems limiting the boundary-layer removal system performance. Overcoming these problems can provide the capability to remove about 1.5 percent of the test section mass flow at Mach number M = 0.8 and about 5 percent at M = 0.25. Previous studies have shown that these boundary-layer mass flow removal rates can reduce the boundary-layer thickness by a factor of two at the model station. Also the effect of upstream boundary-layer removal on the airfoil test data is not likely to be significant under high lifting conditions. Near design conditions, corrections to the test Mach number may be necessary to account for sidewall boundary-layer effects.