The effects of liquid composition, temperature, and pressure on the equilibrium dihedral angles of binary solid–liquid systems inferred from a lattice-like model
暂无分享,去创建一个
[1] A. Yasuda,et al. Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle , 2002 .
[2] T. Yoshino,et al. Wetting properties of anorthite aggregates: Implications for fluid connectivity in continental lower crust , 2002 .
[3] Y. Takei. Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle , 2000 .
[4] S. C. Parker,et al. Modeling the Surface Structure and Stability of α-Quartz , 1999 .
[5] Y. Takei. Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity , 1998 .
[6] A. Yasuda,et al. Connectivity of aqueous fluid in the Earth's upper mantle , 1998 .
[7] M. Holness. Surface Chemical Controls on Pore-Fluid Connectivity in Texturally Equilibrated Materials , 1997 .
[8] B. Jamtveit,et al. FLUID FLOW AND TRANSPORT IN ROCKS , 1996 .
[9] M. Holness. The effect of feldspar on quartz-H2O−CO2 dihedral angles at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites , 1995 .
[10] B. Cantor,et al. An adsorption model of the heterogeneous nucleation of solidification , 1994 .
[11] M. Holness. Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites , 1993 .
[12] M. Holness. Equilibrium dihedral angles in the system quartz-CO2H2ONaCl at 800°C and 1–15 kbar: the effects of pressure and fluid composition on the permeability of quartzites , 1992 .
[13] E. Watson,et al. Direct Observation of Near-Equilibrium Pore Geometry in Synthetic Quartzites at 600°-800°C and 2-10.5 Kbar , 1991, The Journal of Geology.
[14] G. A. Parks. CHAPTER 4. SURFACE ENERGY AND ADSORPTION AT MINERAL/WATER INTERFACES: AN INTRODUCTION , 1990 .
[15] E. Watson,et al. Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation , 1987 .
[16] N. Fujii,et al. Connectivity of melt phase in a partially molten peridotite , 1986 .
[17] A. Passerone,et al. Solid-liquid interfacial tensions by the dihedral angle method. A mathematical approach , 1985 .
[18] D. Camel,et al. Chemical adsorption and temperature dependence of the solid-liquid interfacial tension of metallic binary alloys , 1980 .
[19] H. Waff,et al. Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions , 1979 .
[20] R. Gordon,et al. Velocity and internal friction in partial melts , 1975 .
[21] Nicolas Eustathopoulos,et al. Étude thermodynamique de la tension interfaciale solide/liquide pour un système métallique binaire: III. — Étude expérimentale du système Cu — Pb. Application à la determination de la tension interfaciale du cuivre pur , 1974 .
[22] N. Eustathopoulos,et al. Étude thermodynamique de la tension interfaciale solide/liquide pour un système métallique binaire - I. — Description et calcul statistique , 1972 .
[23] Ilya Prigogine,et al. Surface tension and adsorption , 1966 .
[24] C. W. Burnham,et al. The solubility of quartz in super-critical water , 1965 .
[25] E. Wicke. G. N. Lewis und M. Randall: Thermodynamics, in zweiter Auflage neu bearbeitet von K. S. Pitzer und L. Brewer. McGraw‐Hill 1961. XII, 723 Seiten, 120 Abbildungen, 130 Tabellen, 220 Übungsaufgaben. Preis: Leinen 97 s , 1962, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.
[26] H. C. Heard,et al. The upper three-phase region in the system SiO 2 -H 2 O , 1962 .