The effects of liquid composition, temperature, and pressure on the equilibrium dihedral angles of binary solid–liquid systems inferred from a lattice-like model

[1]  A. Yasuda,et al.  Composition of aqueous fluid coexisting with mantle minerals at high pressure and its bearing on the differentiation of the Earth’s mantle , 2002 .

[2]  T. Yoshino,et al.  Wetting properties of anorthite aggregates: Implications for fluid connectivity in continental lower crust , 2002 .

[3]  Y. Takei Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle , 2000 .

[4]  S. C. Parker,et al.  Modeling the Surface Structure and Stability of α-Quartz , 1999 .

[5]  Y. Takei Constitutive mechanical relations of solid-liquid composites in terms of grain-boundary contiguity , 1998 .

[6]  A. Yasuda,et al.  Connectivity of aqueous fluid in the Earth's upper mantle , 1998 .

[7]  M. Holness Surface Chemical Controls on Pore-Fluid Connectivity in Texturally Equilibrated Materials , 1997 .

[8]  B. Jamtveit,et al.  FLUID FLOW AND TRANSPORT IN ROCKS , 1996 .

[9]  M. Holness The effect of feldspar on quartz-H2O−CO2 dihedral angles at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites , 1995 .

[10]  B. Cantor,et al.  An adsorption model of the heterogeneous nucleation of solidification , 1994 .

[11]  M. Holness Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites , 1993 .

[12]  M. Holness Equilibrium dihedral angles in the system quartz-CO2H2ONaCl at 800°C and 1–15 kbar: the effects of pressure and fluid composition on the permeability of quartzites , 1992 .

[13]  E. Watson,et al.  Direct Observation of Near-Equilibrium Pore Geometry in Synthetic Quartzites at 600°-800°C and 2-10.5 Kbar , 1991, The Journal of Geology.

[14]  G. A. Parks CHAPTER 4. SURFACE ENERGY AND ADSORPTION AT MINERAL/WATER INTERFACES: AN INTRODUCTION , 1990 .

[15]  E. Watson,et al.  Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2H2O fluids and their implications for fluid transport, host-rock physical properties, and fluid inclusion formation , 1987 .

[16]  N. Fujii,et al.  Connectivity of melt phase in a partially molten peridotite , 1986 .

[17]  A. Passerone,et al.  Solid-liquid interfacial tensions by the dihedral angle method. A mathematical approach , 1985 .

[18]  D. Camel,et al.  Chemical adsorption and temperature dependence of the solid-liquid interfacial tension of metallic binary alloys , 1980 .

[19]  H. Waff,et al.  Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions , 1979 .

[20]  R. Gordon,et al.  Velocity and internal friction in partial melts , 1975 .

[21]  Nicolas Eustathopoulos,et al.  Étude thermodynamique de la tension interfaciale solide/liquide pour un système métallique binaire: III. — Étude expérimentale du système Cu — Pb. Application à la determination de la tension interfaciale du cuivre pur , 1974 .

[22]  N. Eustathopoulos,et al.  Étude thermodynamique de la tension interfaciale solide/liquide pour un système métallique binaire - I. — Description et calcul statistique , 1972 .

[23]  Ilya Prigogine,et al.  Surface tension and adsorption , 1966 .

[24]  C. W. Burnham,et al.  The solubility of quartz in super-critical water , 1965 .

[25]  E. Wicke G. N. Lewis und M. Randall: Thermodynamics, in zweiter Auflage neu bearbeitet von K. S. Pitzer und L. Brewer. McGraw‐Hill 1961. XII, 723 Seiten, 120 Abbildungen, 130 Tabellen, 220 Übungsaufgaben. Preis: Leinen 97 s , 1962, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[26]  H. C. Heard,et al.  The upper three-phase region in the system SiO 2 -H 2 O , 1962 .