Correlation of Fracture Toughness and Strength

An extensive collection of data on the fracture toughness (KIc) and strength (sigmaf) of brittle materials has been used to examine the relationship between the mean measured values of KIc and sigmaf. Within this collection of data, it has been observed empirically that KIc frequently is linearly related to sigmaf when values are compared under conditions of either constant grain size (g) or constant density (rho). Assuming that the most-significant material parameters are g and rho, the general fracture-mechanics relationship among KIc, sigmaf, and the critical flaw size (c0) has been used to derive a general expression for (partial lowercaseKIc/partial lowercase sigmaf)x in which the subscript x indicates a condition of constant grain size (x=g) or constant density (x= rho). In general, (partial lowercaseKIc/partial lowercase sigmaf)g is not the same as (partial lowercaseKIc/partial lowercase sigmaf)rho. Imposing the empirical condition (partial lowercaseKIc/partial lowercase sigmaf)x= lambdax, where lambdax is a constant, a relationship between sigmaf and flaw size has been derived. For the observed conditions, the analysis indicates that the square root of the flaw size should vary as the reciprocal of the observed fracture strength.

[1]  T. Mah,et al.  Mechanical Properties of Mullite , 1983 .

[2]  C. Baudín,et al.  Mechanical properties of mullite materials , 1996 .

[3]  Asish Ghosh,et al.  Elevated‐Temperature Fracture Resistance of a Sintered α‐Silicon Carbide , 1989 .

[4]  Y. Okamoto,et al.  Creep deformation of polycrystalline mullite , 1990 .

[5]  O. Sbaizero,et al.  Mechanical properties in the ceria-zirconia system , 1992 .

[6]  S. Sōmiya,et al.  Microstructure and Mechanical Properties of Mullite Prepared by the Sol‐Gel Method , 1987 .

[7]  A. Evans,et al.  Transformation Toughening: An Overview , 1986 .

[8]  S. Kanzaki,et al.  Sintering and Mechanical Properties of Stoichiometric Mullite , 1985 .

[9]  H. Yokoi,et al.  Mechanical Properties of Si2N2O/SiC‐Whisker Composites , 1991 .

[10]  R. Rice Grain size and porosity dependence of ceramic fracture energy and toughness at 22 °C , 1996, Journal of Materials Science.

[11]  A. Mukhopadhyay,et al.  Creep of sintered silicon nitride , 1989 .

[12]  K. Niihara,et al.  Perovskite-type BaTiO3 ceramics containing particulate SiC: Part II Microstructure and mechanical properties , 1998 .

[13]  S. Freiman,et al.  Fracture Toughness Data for Brittle Materials | NIST , 1998 .

[14]  M. Harmer,et al.  Effects of CaO on the Strength and Toughness of AIN , 1989 .

[15]  D. Marshall Strength Characteristics of Transformation‐Toughened Zirconia , 1986 .

[16]  Masahiko Shimada,et al.  Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP) , 1985 .

[17]  C. Baudín Fracture mechanisms in a stoichiometric 3Al2O32SiO2 mullite , 1997 .

[18]  R. Stevens,et al.  The Grain Size Dependence of the Mechanical Properties in TZP Ceramics , 1989 .

[19]  T. Kanai,et al.  Hot-Pressed BN-AlN Ceramic Composites with High Thermal Conductivity-Part II , 1992 .

[20]  G. With,et al.  High-temperature fracture of hot-pressed AIN ceramics , 1983 .

[21]  H. Zimmermann,et al.  Fracture toughness and strength change of neutron-irradiated ceramic materials , 1994 .