Optimal periodic forcing of nonlinear chemical processes for performance improvements

Des fonctionnements periodiques en regime instationnaire peuvent ameliorer la performance optimale en regime permanent des procedes chimiques non lineaires. Pour examiner si le fonctionnement periodique optimal est adequat et obtenir les fonctions de forcage optimales soumises aux contraintes de controle et de regime, il est suggere de convertir les problemes sous une forme qui soit adaptee a la programmation non lineaire avec contrainte. La methode d'optimisation numerique adoptee fait appel a la technique de parametrisation de controle et permet de cette facon de traiter le probleme des forcages d'entree multiples et d'obtenir des fonctions ou des parametres de forcage optimaux tout en etant soumise aux contraintes generales. De plus, la methode fournit des donnees permettant de determiner dans quelle mesure on peut ameliorer la performance des procedes par le controle periodique optimal

[1]  J. E. Bailey,et al.  Comparison between two sufficient conditions for improvement of an optimal steady-state process by periodic operation , 1971 .

[2]  Reduction of optimal control problems to finite-dimensional problems , 1978 .

[3]  K. Onogi,et al.  Periodic control of continuous stirred tank reactors—I: The pi criterion and its applications to isothermal cases , 1981 .

[4]  S. M. Meerkov Condition of vibrational stabilizability for a class of nonlinear systems , 1982 .

[5]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[6]  Rutherford Aris,et al.  Some common features of periodically forced reacting systems , 1986 .

[7]  Optimal Periodic Square-Wave Forcing: A New Method , 1987, 1987 American Control Conference.

[8]  Kok Lay Teo,et al.  Control parametrization: A unified approach to optimal control problems with general constraints , 1988, Autom..

[9]  Kok Lay Teo,et al.  MISER: a FORTRAN program for solving optimal control problems , 1988 .

[10]  Rein Luus,et al.  Sensitivity of optimal control to final state specification by a combined continuation and nonlinear programming approach , 1989 .

[11]  Rein Luus,et al.  Optimization of non‐steady‐state operation of reactors , 1989 .

[12]  B. Erik Ydstie,et al.  The steady-state process with periodic perturbations , 1990 .

[13]  Chyi Hwang,et al.  OPTIMAL CONTROL COMPUTATION FOR DIFFERENTIAL-ALGEBRAIC PROCESS SYSTEMS WITH GENERAL CONSTRAINTS , 1990 .

[14]  B. Ydstie,et al.  Unsteady-state multivariable analysis of periodically perturbed systems , 1990 .

[15]  Rein Luus,et al.  Evaluation of gradients for piecewise constant optimal control , 1991 .

[16]  B. Erik Ydstie,et al.  Periodic forcing of the CSTR: An Application of the generalized II-criterion , 1991 .

[17]  A. Çinar,et al.  A COMPARATIVE STUDY OF TOOLS FOR ASSESSING THE EFFECTS OF FORCED PERIODIC OPERATION OF CATALYTIC REACTORS , 1992 .

[18]  Ali Cinar,et al.  A NUMERICAL-METHOD FOR DETERMINING OPTIMAL PARAMETER VALUES IN FORCED PERIODIC OPERATION , 1992 .

[19]  Jasbir S. Arora,et al.  Comparison of methods for design sensitivity analysis for optimal control of thermal systems , 1993 .