Dopamine modulation of learning and memory in the prefrontal cortex: insights from studies in primates, rodents, and birds

In this review, we provide a brief overview over the current knowledge about the role of dopamine transmission in the prefrontal cortex during learning and memory. We discuss work in humans, monkeys, rats, and birds in order to provide a basis for comparison across species that might help identify crucial features and constraints of the dopaminergic system in executive function. Computational models of dopamine function are introduced to provide a framework for such a comparison. We also provide a brief evolutionary perspective showing that the dopaminergic system is highly preserved across mammals. Even birds, following a largely independent evolution of higher cognitive abilities, have evolved a comparable dopaminergic system. Finally, we discuss the unique advantages and challenges of using different animal models for advancing our understanding of dopamine function in the healthy and diseased brain.

[1]  B. Houssay,et al.  Phlorrhizin diabetes in fasting or fed hypophysectomized dogs , 1932, The Journal of physiology.

[2]  Organization and evolution , 1970 .

[3]  M. M. Kamshilov [Organization and evolution]. , 1970, Zhurnal obshchei biologii.

[4]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[5]  J. Glowinski,et al.  Dopaminergic Terminals in the Rat Cortex , 1973, Science.

[6]  D. Ingvar,et al.  ABNORMALITIES OF CEREBRAL BLOOD FLOW DISTRIBUTION IN PATIENTS WITH CHRONIC SCHIZOPHRENIA , 1974, Acta psychiatrica Scandinavica.

[7]  Anders Björklund,et al.  Organization of catecholamine neurons projecting to the frontal cortex in the rat , 1978, Brain Research.

[8]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[9]  M. Bozkurt,et al.  Functional anatomy. , 1980, Equine veterinary journal.

[10]  G. Rieke Kainic acid lesions of pigeon paleostriatum: A Model for study of movement disorders , 1980, Physiology & Behavior.

[11]  J. Fuster Prefrontal Cortex , 2018 .

[12]  G. Rieke Movement disorders and lesions of pigeon brain stem analogues of basal ganglia , 1981, Physiology & Behavior.

[13]  H. Simon,et al.  [Dopaminergic A10 neurons and frontal system (author's transl)]. , 1981, Journal de physiologie.

[14]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[15]  I. Divac,et al.  The Prefrontal 'Cortex' in the Pigeon , 1982 .

[16]  Y. Agid,et al.  Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease , 1983, Brain Research.

[17]  A. Grace,et al.  The control of firing pattern in nigral dopamine neurons: burst firing , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  H. Maeno,et al.  Dopamine Receptors , 2018 .

[19]  E. Bennett,et al.  Short- and long-term components of working memory in the rat. , 1987, Behavioral neuroscience.

[20]  L. Descarries,et al.  Regional and laminar density of the dopamine innervation in adult rat cerebral cortex , 1987, Neuroscience.

[21]  P. Seeman,et al.  Dopamine receptors and the dopamine hypothesis of schizophrenia , 1987, Synapse.

[22]  J. Palacios,et al.  Neurotransmitter receptors in the avian brain. I. Dopamine receptors , 1988, Brain Research.

[23]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[24]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[25]  Werner J. Schmidt,et al.  6-Hydroxydopamine lesion of the rat prefrontal cortex increases locomotor activity, impairs acquisition of delayed alternation tasks, but does not affect uninterrupted tasks in the radial maze , 1990, Behavioural Brain Research.

[26]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[27]  A. Grace Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia , 1991, Neuroscience.

[28]  P. Goldman-Rakic,et al.  D1 dopamine receptors in prefrontal cortex: involvement in working memory , 1991, Science.

[29]  P. Goldman-Rakic,et al.  Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390 , 1991, Neuroscience.

[30]  Onur Gu¨ntu¨rku¨n,et al.  The dopaminergic innervation of the pigeon caudolateral forebrain: immunocytochemical evidence for a ‘prefrontal cortex’ in birds? , 1993, Brain Research.

[31]  W. Schultz,et al.  Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  D. Zipser,et al.  A spiking network model of short-term active memory , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  P. Goldman-Rakic,et al.  The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. , 1994, Journal of neurophysiology.

[34]  D. Rosenberg,et al.  Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: A tyrosine hydroxylase immunohistochemical study , 1994, Biological Psychiatry.

[35]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[36]  O. Güntürkün,et al.  Dopaminergic innervation of the telencephalon of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine , 1995, The Journal of comparative neurology.

[37]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  P S Goldman-Rakic,et al.  Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[40]  M. Iyo,et al.  Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET , 1997, Nature.

[41]  JaneR . Taylor,et al.  Supranormal Stimulation of D1 Dopamine Receptors in the Rodent Prefrontal Cortex Impairs Spatial Working Memory Performance , 1997, The Journal of Neuroscience.

[42]  S. Sesack,et al.  Chapter VI Dopamine systems in the primate brain , 1997 .

[43]  Monica Luciana,et al.  Dopaminergic Modulation of Working Memory for Spatial but Not Object Cues in Normal Humans , 1997, Journal of Cognitive Neuroscience.

[44]  M. Farah,et al.  Effects of bromocriptine on human subjects depend on working memory capacity , 1997, Neuroreport.

[45]  W. Schultz Dopamine neurons and their role in reward mechanisms , 1997, Current Opinion in Neurobiology.

[46]  A. Arnsten,et al.  Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. , 1997, The Journal of pharmacology and experimental therapeutics.

[47]  O. Güntürkün Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent in pigeons: functional similarities to the mammalian prefrontal system? , 1997, Journal fur Hirnforschung.

[48]  K. Hikosaka,et al.  Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. , 1997, Journal of neurophysiology.

[49]  P. Goldman-Rakic,et al.  Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. , 1998, Archives of general psychiatry.

[50]  J. Seamans,et al.  D1 Receptor Modulation of Hippocampal–Prefrontal Cortical Circuits Integrating Spatial Memory with Executive Functions in the Rat , 1998, The Journal of Neuroscience.

[51]  A. C. Roberts,et al.  Perseveration and Strategy in a Novel Spatial Self-Ordered Sequencing Task for Nonhuman Primates: Effects of Excitotoxic Lesions and Dopamine Depletions of the Prefrontal Cortex , 1998, Journal of Cognitive Neuroscience.

[52]  S. Pollmann,et al.  D1- Versus D2-Receptor Modulation of Visuospatial Working Memory in Humans , 1998, The Journal of Neuroscience.

[53]  E. Miller,et al.  Neural Activity in the Primate Prefrontal Cortex during Associative Learning , 1998, Neuron.

[54]  D. Durstewitz,et al.  The dopaminergic innervation of the pigeon telencephalon: distribution of DARPP-32 and co-occurrence with glutamate decarboxylase and tyrosine hydroxylase , 1998, Neuroscience.

[55]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[56]  Y. Smith,et al.  Microcircuitry of the direct and indirect pathways of the basal ganglia. , 1998, Neuroscience.

[57]  D. Durstewitz,et al.  The dopaminergic innervation of the avian telencephalon , 1999, Progress in Neurobiology.

[58]  D. Durstewitz,et al.  A Neurocomputational Theory of the Dopaminergic Modulation of Working Memory Functions , 1999, The Journal of Neuroscience.

[59]  O. Güntürkün,et al.  Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro‐ and anterograde pathway tracing study , 1999, The Journal of comparative neurology.

[60]  A. Baddeley The episodic buffer: a new component of working memory? , 2000, Trends in Cognitive Sciences.

[61]  N. Kurzina,et al.  The effects of local application of D2 selective dopaminergic drugs into the medial prefrontal cortex of rats in a delayed spatial choice task , 2000, Behavioural Brain Research.

[62]  M. Colombo,et al.  Is the avian hippocampus a functional homologue of the mammalian hippocampus? , 2000, Neuroscience & Biobehavioral Reviews.

[63]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.

[64]  Sawaguchi The role of D1-dopamine receptors in working memory-guided movements mediated by frontal cortical areas. , 2000, Parkinsonism & related disorders.

[65]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[66]  P. Goldman-Rakic,et al.  D1 receptors in prefrontal cells and circuits , 2000, Brain Research Reviews.

[67]  Martin H. Teicher,et al.  Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats , 2000, Synapse.

[68]  Lirong Cui,et al.  The Network Model , 2000 .

[69]  N. Gorelova,et al.  Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. , 2000, Journal of neurophysiology.

[70]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[71]  T. Robbins,et al.  Chemical neuromodulation of frontal-executive functions in humans and other animals , 2000, Experimental Brain Research.

[72]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[73]  M. Koch,et al.  Impairment in a discrimination reversal task after D1 receptor blockade in the pigeon "prefrontal cortex". , 2000, Behavioral neuroscience.

[74]  Michael J. Frank,et al.  Interactions between frontal cortex and basal ganglia in working memory: A computational model , 2001, Cognitive, affective & behavioral neuroscience.

[75]  R. Straub,et al.  Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Floresco,et al.  Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. , 2001, Behavioral neuroscience.

[77]  D. Jaffe,et al.  Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. , 2001, Journal of neurophysiology.

[78]  K. C. Anderson,et al.  Single neurons in prefrontal cortex encode abstract rules , 2001, Nature.

[79]  D E Nichols,et al.  D1 dopamine receptors. , 2001, International review of neurobiology.

[80]  T. Goldberg,et al.  Dopaminergic modulation of cortical function in patients with Parkinson's disease , 2002, Annals of neurology.

[81]  Onur Güntürkün,et al.  Working Memory Neurons in Pigeons , 2002, The Journal of Neuroscience.

[82]  Jonathan D. Cohen,et al.  Computational perspectives on dopamine function in prefrontal cortex , 2002, Current Opinion in Neurobiology.

[83]  W. Schultz Getting Formal with Dopamine and Reward , 2002, Neuron.

[84]  A. Malhotra,et al.  A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. , 2002, The American journal of psychiatry.

[85]  Jonathan D. Cohen,et al.  Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control. , 2002, Cerebral cortex.

[86]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[87]  Daniel Durstewitz,et al.  The computational role of dopamine D1 receptors in working memory , 2002, Neural Networks.

[88]  G. Barrionuevo,et al.  Dopamine modulation of neuronal function in the monkey prefrontal cortex , 2002, Physiology & Behavior.

[89]  W. Schultz,et al.  Coding of Predicted Reward Omission by Dopamine Neurons in a Conditioned Inhibition Paradigm , 2003, The Journal of Neuroscience.

[90]  J. Vincent,et al.  Evolution and cell biology of dopamine receptors in vertebrates , 2003, Biology of the cell.

[91]  S. Faraone,et al.  Meta-analysis identifies an association between the dopamine D2 receptor gene and schizophrenia , 2003, Molecular Psychiatry.

[92]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[93]  H. Moore,et al.  Prefrontal DA Transmission at D1 Receptors and the Pathology of Schizophrenia , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[94]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[95]  Kuei Y Tseng,et al.  Dopamine–Glutamate Interactions Controlling Prefrontal Cortical Pyramidal Cell Excitability Involve Multiple Signaling Mechanisms , 2004, The Journal of Neuroscience.

[96]  Nicola S. Clayton,et al.  The Mentality of Crows: Convergent Evolution of Intelligence in Corvids and Apes , 2004, Science.

[97]  T. Robbins,et al.  Dopaminergic Modulation of Visual Attention and Working Memory in the Rodent Prefrontal Cortex , 2004, Neuropsychopharmacology.

[98]  Anissa Abi-Dargham,et al.  Do we still believe in the dopamine hypothesis? New data bring new evidence. , 2004, The international journal of neuropsychopharmacology.

[99]  S. Floresco,et al.  Magnitude of Dopamine Release in Medial Prefrontal Cortex Predicts Accuracy of Memory on a Delayed Response Task , 2004, The Journal of Neuroscience.

[100]  T. Robbins,et al.  Cognitive Inflexibility After Prefrontal Serotonin Depletion , 2004, Science.

[101]  P. Goldman-Rakic,et al.  Selective D2 Receptor Actions on the Functional Circuitry of Working Memory , 2004, Science.

[102]  Xiao-Jing Wang,et al.  Effects of Neuromodulation in a Cortical Network Model of Object Working Memory Dominated by Recurrent Inhibition , 2004, Journal of Computational Neuroscience.

[103]  M. Egan,et al.  Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. , 2004, American journal of human genetics.

[104]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[105]  C. Marsden,et al.  l-Dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction , 2005, Psychopharmacology.

[106]  Jonas Rose,et al.  Neural Correlates of Executive Control in the Avian Brain , 2005, PLoS biology.

[107]  Christopher C Lapish,et al.  Mesocortical Dopamine Neurons Operate in Distinct Temporal Domains Using Multimodal Signaling , 2005, The Journal of Neuroscience.

[108]  W. Pan,et al.  Dopamine Cells Respond to Predicted Events during Classical Conditioning: Evidence for Eligibility Traces in the Reward-Learning Network , 2005, The Journal of Neuroscience.

[109]  E. Miller,et al.  Different time courses of learning-related activity in the prefrontal cortex and striatum , 2005, Nature.

[110]  Anthony A Grace,et al.  A Subpopulation of Neurons in the Medial Prefrontal Cortex Encodes Emotional Learning with Burst and Frequency Codes through a Dopamine D4 Receptor-Dependent Basolateral Amygdala Input , 2005, The Journal of Neuroscience.

[111]  Gerald E. Hough,et al.  Avian brains and a new understanding of vertebrate brain evolution , 2005, Nature Reviews Neuroscience.

[112]  Harvey J Karten,et al.  Organization and evolution of the avian forebrain. , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[113]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[114]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[115]  O. Güntürkün The avian ‘prefrontal cortex’ and cognition , 2005, Current Opinion in Neurobiology.

[116]  T. Robbins,et al.  Prefrontal Serotonin Depletion Affects Reversal Learning But Not Attentional Set Shifting , 2005, The Journal of Neuroscience.

[117]  T. Kalenscher,et al.  Single Units in the Pigeon Brain Integrate Reward Amount and Time-to-Reward in an Impulsive Choice Task , 2005, Current Biology.

[118]  O. Güntürkün Avian and mammalian “prefrontal cortices”: Limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance , 2005, Brain Research Bulletin.

[119]  P. Goldman-Rakic,et al.  Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys , 1994, Psychopharmacology.

[120]  N. Makris,et al.  Structural Brain Imaging of Attention-Deficit/Hyperactivity Disorder , 2005, Biological Psychiatry.

[121]  G. Williams,et al.  Under the curve: Critical issues for elucidating D1 receptor function in working memory , 2006, Neuroscience.

[122]  K. Berridge The debate over dopamine’s role in reward: the case for incentive salience , 2007, Psychopharmacology.

[123]  T. Brown,et al.  Executive Functions and Attention Deficit Hyperactivity Disorder: Implications of two conflicting views , 2006 .

[124]  Michael J. Frank,et al.  Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia , 2006, Neural Computation.

[125]  S. Floresco,et al.  Mesocortical dopamine modulation of executive functions: beyond working memory , 2006, Psychopharmacology.

[126]  N. Hessler,et al.  Modulation of singing‐related activity in the songbird ventral tegmental area by social context , 2006, The European journal of neuroscience.

[127]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[128]  Olaf Sporns,et al.  A Large-scale Neurocomputational Model of Task-oriented Behavior Selection and Working Memory in Prefrontal Cortex , 2006, Journal of Cognitive Neuroscience.

[129]  E. Kandel,et al.  Transient and Selective Overexpression of Dopamine D2 Receptors in the Striatum Causes Persistent Abnormalities in Prefrontal Cortex Functioning , 2006, Neuron.

[130]  T. Robbins,et al.  Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. , 2006, Cerebral cortex.

[131]  A. Grace,et al.  The Yin and Yang of dopamine release: a new perspective , 2007, Neuropharmacology.

[132]  Onur Güntürkün,et al.  Differential increase of extracellular dopamine and serotonin in the ‘prefrontal cortex’ and striatum of pigeons during working memory , 2007, The European journal of neuroscience.

[133]  Graham V. Williams,et al.  Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory , 2007, Nature Neuroscience.

[134]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[135]  Graham V. Williams,et al.  Tuning the engine of cognition: A focus on NMDA/D1 receptor interactions in prefrontal cortex , 2007, Brain and Cognition.

[136]  J. Jentsch,et al.  Dopamine D2/D3 Receptors Play a Specific Role in the Reversal of a Learned Visual Discrimination in Monkeys , 2007, Neuropsychopharmacology.

[137]  J. Horvitz,et al.  Dopaminergic Mechanisms in Actions and Habits , 2007, The Journal of Neuroscience.

[138]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[139]  T. Robbins,et al.  Differential regulation of fronto-executive function by the monoamines and acetylcholine. , 2007, Cerebral cortex.

[140]  Thomas E. Hazy,et al.  Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[141]  A. Björklund,et al.  Dopamine neuron systems in the brain: an update , 2007, Trends in Neurosciences.

[142]  N. Hessler,et al.  Role of the midbrain dopaminergic system in modulation of vocal brain activation by social context , 2007, The European journal of neuroscience.

[143]  Fumitoshi Kodaka,et al.  Differential Contributions of Prefrontal and Hippocampal Dopamine D1 and D2 Receptors in Human Cognitive Functions , 2008, The Journal of Neuroscience.

[144]  P. Redgrave,et al.  What is reinforced by phasic dopamine signals? , 2008, Brain Research Reviews.

[145]  Trevor W Robbins,et al.  Lesions of the Medial Striatum in Monkeys Produce Perseverative Impairments during Reversal Learning Similar to Those Produced by Lesions of the Orbitofrontal Cortex , 2008, The Journal of Neuroscience.

[146]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[147]  Jonas Rose,et al.  Insight without cortex: Lessons from the avian brain , 2008, Consciousness and Cognition.

[148]  O. Güntürkün,et al.  Stimulation of dopamine D1 receptors in the avian fronto-striatal system adjusts daily cognitive fluctuations , 2008, Behavioural Brain Research.

[149]  D. Durstewitz,et al.  The Dual-State Theory of Prefrontal Cortex Dopamine Function with Relevance to Catechol-O-Methyltransferase Genotypes and Schizophrenia , 2008, Biological Psychiatry.

[150]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[151]  W. Pan,et al.  Tripartite Mechanism of Extinction Suggested by Dopamine Neuron Activity and Temporal Difference Model , 2008, The Journal of Neuroscience.

[152]  M. D’Esposito Working memory. , 2008, Handbook of clinical neurology.

[153]  J. Palacios,et al.  Distribution of 5-ht and Da Receptors in Primate Prefrontal Cortex: Implications for Pathophysiology and Treatment Specifically, It Receives Dopaminergic Efferents from the Ventral Tegmental Area (vta) , 2022 .

[154]  I. Waldman,et al.  Candidate gene studies of ADHD: a meta-analytic review , 2009, Human Genetics.

[155]  Jonas Rose,et al.  Theory meets pigeons: The influence of reward-magnitude on discrimination-learning , 2009, Behavioural Brain Research.

[156]  G. Mengod,et al.  Quantitative analysis of the expression of dopamine D1 and D2 receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. , 2009, Cerebral cortex.

[157]  T. Tabira,et al.  Age-related spatial working memory impairment is caused by prefrontal cortical dopaminergic dysfunction in rats , 2009, Neuroscience.

[158]  Daniel Durstewitz,et al.  Implications of synaptic biophysics for recurrent network dynamics and active memory , 2009, Neural Networks.

[159]  E. Miller,et al.  Learning Substrates in the Primate Prefrontal Cortex and Striatum: Sustained Activity Related to Successful Actions , 2009, Neuron.

[160]  Evolution of Association Pallial Areas : In Birds , 2009 .

[161]  A. Aertsen,et al.  Neuronal encoding of meaning: Establishing category-selective response patterns in the avian ‘prefrontal cortex’ , 2009, Behavioural Brain Research.

[162]  L. Weyandt Executive Functions and Attention Deficit Hyperactivity Disorder , 2009 .

[163]  T. Robbins,et al.  Differential Contributions of Dopamine and Serotonin to Orbitofrontal Cortex Function in the Marmoset , 2008, Cerebral cortex.

[164]  Nicole M. Lauzon,et al.  Dopamine D1 versus D4 Receptors Differentially Modulate the Encoding of Salient versus Nonsalient Emotional Information in the Medial Prefrontal Cortex , 2009, The Journal of Neuroscience.

[165]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[166]  M. Ungless,et al.  Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli , 2009, Proceedings of the National Academy of Sciences.

[167]  R. Schmidt,et al.  Striatal action-learning based on dopamine concentration , 2009, Experimental Brain Research.

[168]  E. Jarvis,et al.  Dopamine receptors in a songbird brain , 2010, The Journal of comparative neurology.

[169]  Lars Bäckman,et al.  Influence of COMT Gene Polymorphism on fMRI-assessed Sustained and Transient Activity during a Working Memory Task , 2010, Journal of Cognitive Neuroscience.

[170]  Ruben C Gur,et al.  Neurocognition in schizophrenia. , 2010, Current topics in behavioral neurosciences.

[171]  Ethan S. Bromberg-Martin,et al.  Dopamine in Motivational Control: Rewarding, Aversive, and Alerting , 2010, Neuron.

[172]  A. Arnsten,et al.  Dynamic Network Connectivity: A new form of neuroplasticity , 2010, Trends in Cognitive Sciences.

[173]  Paul M. Thompson,et al.  Mapping Gray Matter Development: Implications for Typical Development and Vulnerability to Psychopathology , 2022 .

[174]  G. Mengod,et al.  D2 and D4 dopamine receptor mRNA distribution in pyramidal neurons and GABAergic subpopulations in monkey prefrontal cortex: implications for schizophrenia treatment , 2010, Neuroscience.

[175]  Association Between Aggressive Behavior and A Functional Polymorphism in the COMT Gene , 2010 .

[176]  N. Pivac,et al.  Catechol-O-methyl transferase and schizophrenia. , 2010, Psychiatria Danubina.

[177]  Angie A. Kehagia,et al.  Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease , 2010, The Lancet Neurology.

[178]  O. Güntürkün,et al.  The role of dopamine in maintenance and distractability of attention in the “prefrontal cortex” of pigeons , 2010, Neuroscience.

[179]  S. MacDonald,et al.  Dopamine D1 receptors and age differences in brain activation during working memory , 2011, Neurobiology of Aging.

[180]  Jens C. Pruessner,et al.  Psychosocial stress is associated with in vivo dopamine release in human ventromedial prefrontal cortex: A positron emission tomography study using [18F]fallypride , 2011, NeuroImage.

[181]  M. Webster,et al.  Developmental changes in human dopamine neurotransmission: cortical receptors and terminators , 2012, BMC Neuroscience.

[182]  K. Mirnics,et al.  Genetic predisposition to schizophrenia: what did we learn and what does the future hold? , 2011, Neuropsychopharmacologia Hungarica : a Magyar Pszichofarmakologiai Egyesulet lapja = official journal of the Hungarian Association of Psychopharmacology.

[183]  A. Arnsten Catecholamine Influences on Dorsolateral Prefrontal Cortical Networks , 2011, Biological Psychiatry.

[184]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[185]  E. Kandel,et al.  D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex , 2011, Proceedings of the National Academy of Sciences.

[186]  M. Fee,et al.  A hypothesis for basal ganglia-dependent reinforcement learning in the songbird , 2011, Neuroscience.

[187]  Robert C. Wilson,et al.  Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex , 2011, Nature Neuroscience.

[188]  Mark A. Gluck,et al.  Computational cognitive models of prefrontal-striatal-hippocampal interactions in Parkinson's disease and schizophrenia , 2011, Neural Networks.

[189]  Naftali Tishby,et al.  Dopaminergic Balance between Reward Maximization and Policy Complexity , 2011, Front. Syst. Neurosci..

[190]  T. Robbins,et al.  Dopamine, But Not Serotonin, Regulates Reversal Learning in the Marmoset Caudate Nucleus , 2011, The Journal of Neuroscience.

[191]  E. Miller,et al.  Differences between Neural Activity in Prefrontal Cortex and Striatum during Learning of Novel Abstract Categories , 2011, Neuron.

[192]  C. Gerfen,et al.  Modulation of striatal projection systems by dopamine. , 2011, Annual review of neuroscience.

[193]  A. Dörfler,et al.  Structural brain imaging. , 2012, Handbook of clinical neurology.

[194]  Karl Deisseroth,et al.  Synaptic Activity Unmasks Dopamine D2 Receptor Modulation of a Specific Class of Layer V Pyramidal Neurons in Prefrontal Cortex , 2012, The Journal of Neuroscience.

[195]  Jill Cousins,et al.  A network model , 2012 .

[196]  O. Güntürkün,et al.  Plasticity in D1-Like Receptor Expression Is Associated with Different Components of Cognitive Processes , 2012, PloS one.

[197]  Christian J. Fiebach,et al.  The COMT Val158Met polymorphism modulates working memory performance under acute stress , 2012, Psychoneuroendocrinology.

[198]  Anatol C. Kreitzer,et al.  Distinct roles for direct and indirect pathway striatal neurons in reinforcement , 2012, Nature Neuroscience.

[199]  B. Horwitz,et al.  Dopamine regulation of human speech and bird song: A critical review , 2012, Brain and Language.

[200]  Jonathan D. Cohen,et al.  Role of prefrontal cortex and the midbrain dopamine system in working memory updating , 2012, Proceedings of the National Academy of Sciences.

[201]  A. Arnsten,et al.  Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses , 2012, Neuron.

[202]  E. Miller,et al.  The Role of Prefrontal Dopamine D1 Receptors in the Neural Mechanisms of Associative Learning , 2012, Neuron.

[203]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[204]  M. Khamassi,et al.  Dopaminergic Control of the Exploration-Exploitation Trade-Off via the Basal Ganglia , 2012, Front. Neurosci..

[205]  Adam G. Carter,et al.  D1 Receptor Modulation of Action Potential Firing in a Subpopulation of Layer 5 Pyramidal Neurons in the Prefrontal Cortex , 2012, The Journal of Neuroscience.

[206]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[207]  Onur Güntürkün,et al.  The convergent evolution of neural substrates for cognition , 2012, Psychological research.

[208]  Murray Shanahan,et al.  Large-scale network organization in the avian forebrain: a connectivity matrix and theoretical analysis , 2013, Front. Comput. Neurosci..

[209]  S. Floresco Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions , 2013, Front. Neurosci..

[210]  L. Kasper,et al.  Attention-deficit/hyperactivity disorder (ADHD) and working memory in adults: a meta-analytic review. , 2013, Neuropsychology.

[211]  S. Mizumori,et al.  Effects of Prefrontal Cortical Inactivation on Neural Activity in the Ventral Tegmental Area , 2013, The Journal of Neuroscience.

[212]  Andreas R. Pfenning,et al.  Global view of the functional molecular organization of the avian cerebrum: Mirror images and functional columns , 2013, The Journal of comparative neurology.

[213]  Andreas Nieder,et al.  Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds , 2013, Nature Communications.

[214]  W. Newsome,et al.  Context-dependent computation by recurrent dynamics in prefrontal cortex , 2013, Nature.

[215]  A. Graybiel,et al.  Prolonged Dopamine Signalling in Striatum Signals Proximity and Value of Distant Rewards , 2013, Nature.

[216]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[217]  Angelo Arleo,et al.  Dopaminergic Control of Long-Term Depression/Long-Term Potentiation Threshold in Prefrontal Cortex , 2013, The Journal of Neuroscience.

[218]  O. Güntürkün,et al.  Striatal dopamine D1 receptors are involved in the dissociation of learning based on reward-magnitude , 2013, Neuroscience.

[219]  N. Narayanan,et al.  Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease , 2013, Reviews in the neurosciences.

[220]  W. Schultz Updating dopamine reward signals , 2013, Current Opinion in Neurobiology.

[221]  Nikil D. Dutt,et al.  A large-scale neural network model of the influence of neuromodulatory levels on working memory and behavior , 2013, Front. Comput. Neurosci..

[222]  Young T. Hong,et al.  Orbitofrontal Dopamine Depletion Upregulates Caudate Dopamine and Alters Behavior via Changes in Reinforcement Sensitivity , 2014, The Journal of Neuroscience.

[223]  S. Ikemoto,et al.  Similar Roles of Substantia Nigra and Ventral Tegmental Dopamine Neurons in Reward and Aversion , 2014, The Journal of Neuroscience.

[224]  Katarina Leskovar Executive functions and attention deficit hyperactivity disorder , 2014 .

[225]  Aviad Hai,et al.  Molecular-Level Functional Magnetic Resonance Imaging of Dopaminergic Signaling , 2014, Science.

[226]  Andreas Nieder,et al.  Neuronal Correlates of Visual Working Memory in the Corvid Endbrain , 2014, The Journal of Neuroscience.

[227]  Michael J Kahana,et al.  Microstimulation of the Human Substantia Nigra Alters Reinforcement Learning , 2014, The Journal of Neuroscience.

[228]  L. Siever,et al.  Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [11C]NNC112 , 2014, Psychopharmacology.

[229]  Xiao-Jing Wang,et al.  Erratum to: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition , 2014, Journal of Computational Neuroscience.

[230]  E. Miller,et al.  Neural Substrates of Dopamine D2 Receptor Modulated Executive Functions in the Monkey Prefrontal Cortex. , 2015, Cerebral cortex.

[231]  Paul Maruff,et al.  Impairments of spatial working memory and attention following acute psychosocial stress. , 2015, Stress and health : journal of the International Society for the Investigation of Stress.

[232]  Erich D Jarvis,et al.  Evolution of the Pallium in Birds and Reptiles , 2022 .