Posterior consistency for Bayesian inverse problems through stability and regression results

In the Bayesian approach, the a priori knowledge about the input of a mathematical model is described via a probability measure. The joint distribution of the unknown input and the data is then conditioned, using Bayes’ formula, giving rise to the posterior distribution on the unknown input. In this setting we prove posterior consistency for nonlinear inverse problems: a sequence of data is considered, with diminishing fluctuations around a single truth and it is then of interest to show that the resulting sequence of posterior measures arising from this sequence of data concentrates around the truth used to generate the data. Posterior consistency justifies the use of the Bayesian approach very much in the same way as error bounds and convergence results for regularization techniques do. As a guiding example, we consider the inverse problem of reconstructing the diffusion coefficient from noisy observations of the solution to an elliptic PDE in divergence form. This problem is approached by splitting the forward operator into the underlying continuum model and a simpler observation operator based on the output of the model. In general, these splittings allow us to conclude posterior consistency provided a deterministic stability result for the underlying inverse problem and a posterior consistency result for the Bayesian regression problem with the push-forward prior. Moreover, we prove posterior consistency for the Bayesian regression problem based on the regularity, the tail behaviour and the small ball probabilities of the prior.

[1]  A. Stuart,et al.  MAP estimators and their consistency in Bayesian nonparametric inverse problems , 2013, 1303.4795.

[2]  Andrew M. Stuart,et al.  Bayesian posterior contraction rates for linear severely ill-posed inverse problems , 2012, 1210.1563.

[3]  Stig Larsson,et al.  Posterior Contraction Rates for the Bayesian Approach to Linear Ill-Posed Inverse Problems , 2012, 1203.5753.

[4]  Kolyan Ray,et al.  Bayesian inverse problems with non-conjugate priors , 2012, 1209.6156.

[5]  Andrew M. Stuart,et al.  Sparse MCMC gpc finite element methods for Bayesian inverse problems , 2012 .

[6]  Andrew M. Stuart,et al.  Complexity analysis of accelerated MCMC methods for Bayesian inversion , 2012, 1207.2411.

[7]  J. Florens,et al.  Regularized Posteriors in Linear Ill‐Posed Inverse Problems , 2012 .

[8]  Stig Larsson,et al.  POSTERIOR CONSISTENCY OF THE BAYESIAN APPROACH TO LINEAR ILL-POSED INVERSE PROBLEMS , 2012 .

[9]  T. Hansen,et al.  Inverse problems with non-trivial priors: efficient solution through sequential Gibbs sampling , 2012, Computational Geosciences.

[10]  M. Lifshits Bibliography of Small Deviation Probabilities , 2012 .

[11]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[12]  A. Stuart,et al.  Besov priors for Bayesian inverse problems , 2011, 1105.0889.

[13]  A. M. Stuart,et al.  Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.

[14]  A. V. D. Vaart,et al.  BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS , 2011, 1103.2692.

[15]  Andrew M. Stuart,et al.  Uncertainty Quantification and Weak Approximation of an Elliptic Inverse Problem , 2011, SIAM J. Numer. Anal..

[16]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[17]  Andrew M. Stuart,et al.  Inverse problems: A Bayesian perspective , 2010, Acta Numerica.

[18]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[19]  Martin Hairer,et al.  An Introduction to Stochastic PDEs , 2009, 0907.4178.

[20]  H. Triebel Function Spaces and Wavelets on Domains , 2008 .

[21]  Van Der Vaart,et al.  Rates of contraction of posterior distributions based on Gaussian process priors , 2008 .

[22]  V. Bogachev Gaussian Measures on a , 2022 .

[23]  M. Schervish,et al.  On posterior consistency in nonparametric regression problems , 2007 .

[24]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[25]  A. Stuart,et al.  ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.

[26]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[27]  Frédéric Ferraty,et al.  Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .

[28]  S. Walker New approaches to Bayesian consistency , 2004, math/0503672.

[29]  L. Wasserman,et al.  Rates of convergence of posterior distributions , 2001 .

[30]  Q. Shao,et al.  Gaussian processes: Inequalities, small ball probabilities and applications , 2001 .

[31]  A. V. D. Vaart,et al.  Convergence rates of posterior distributions , 2000 .

[32]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[33]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[34]  M. Lifshits Gaussian Random Functions , 1995 .

[35]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[36]  J. Roe Elliptic Operators, Topology and Asymptotic Methods , 1988 .

[37]  D. Freedman,et al.  On inconsistent Bayes estimates of location , 1986 .

[38]  David A. Freedman,et al.  Rejoinder: On the Consistency of Bayes Estimates , 1986 .

[39]  D. Freedman,et al.  On the consistency of Bayes estimates , 1986 .

[40]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[41]  G. Richter An Inverse Problem for the Steady State Diffusion Equation , 1981 .

[42]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[43]  C. Borell Convex measures on locally convex spaces , 1974 .

[44]  D. Freedman On the Asymptotic Behavior of Bayes' Estimates in the Discrete Case , 1963 .

[45]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[46]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.