Conservative finite difference schemes for the modified Camassa-Holm equation
暂无分享,去创建一个
[1] D. Furihata,et al. Finite Difference Schemes for ∂u∂t=(∂∂x)αδGδu That Inherit Energy Conservation or Dissipation Property , 1999 .
[2] D. Furihata,et al. Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .
[3] Brynjulf Owren,et al. Multi-symplectic integration of the Camassa-Holm equation , 2008, J. Comput. Phys..
[4] Hisashi Yamaguchi,et al. An energy-conserving Galerkin scheme for a class of nonlinear dispersive equations , 2009, J. Comput. Phys..
[5] R. McLachlan,et al. Well-posedness of modified Camassa-Holm equations , 2009 .
[6] Pin Zhang. Global Existence of Solutions to the Modified Camassa-Holm Shallow Water Equation , 2010 .
[7] Takayasu Matsuo,et al. A Hamiltonian-conserving Galerkin scheme for the Camassa-Holm equation , 2010, J. Comput. Appl. Math..
[8] D. Furihata,et al. Invariants-preserving integration of the modified Camassa–Holm equation , 2011 .
[9] Xavier Raynaud,et al. Geometric finite difference schemes for the generalized hyperelastic-rod wave equation , 2011, J. Comput. Appl. Math..