A Real‐Time Approach to Management and Monitoring of Groundwater Hydraulics

This paper describes a sequential approach to the management and monitoring program of groundwater hydraulics. The management model, structured as a discrete time optimal control problem, identifies the optimal withdrawal rates by satisfying a penalty type cost function of two conflicting objectives: satisfying withdrawal demands and maintaining target hydraulic head levels. A control action obtained in the feedback form is shown in this study to depend on future uncertainty in the hydraulic head prediction due to the variability in the hydraulic conductivity. As new field observations become available the hydraulic conductivity field is updated in “real-time.” A numerical example demonstrates the sequential approach and quantifies the benefits of using the monitoring program. The effects of the objective function uncertainty upon the optimal management solution is discussed; a simple case illustrating an optimization bias appearance is presented.

[1]  U. Shamir,et al.  Optimal Annual Operation of a Coastal Aquifer , 1984 .

[2]  L. Townley,et al.  Computationally Efficient Algorithms for Parameter Estimation and Uncertainty Propagation in Numerical Models of Groundwater Flow , 1985 .

[3]  R. Willis,et al.  Groundwater Systems Planning and Management , 1987 .

[4]  S. Gorelick,et al.  Optimal dynamic management of groundwater pollutant sources , 1982 .

[5]  Richard C. Peralta,et al.  Sustained‐Yield Ground‐Water Planning by Goal Programing , 1986 .

[6]  Dennis McLaughlin,et al.  A distributed parameter approach for evaluating the accuracy of groundwater model predictions: 2. Application to groundwater flow , 1988 .

[7]  P. Kitanidis A first-order approximation to stochastic optimal control of reservoirs , 1987 .

[8]  Joel Massmann,et al.  Groundwater contamination from waste management sites: The interaction between risk‐based engineering design and regulatory policy: 1. Methodology , 1987 .

[9]  P. Gill,et al.  Aquifer Reclamation Design: The Use of Contaminant Transport Simulation Combined With Nonlinear Programing , 1984 .

[10]  M. Mariño,et al.  The inverse problem for confined aquifer flow: Identification and estimation with extensions , 1987 .

[11]  E. Sudicky A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process , 1986 .

[12]  D. McLaughlin,et al.  Stochastic analysis of nonstationary subsurface solute transport: 2. Conditional moments , 1989 .

[13]  A. Nayfeh Introduction To Perturbation Techniques , 1981 .

[14]  S. Gorelick A review of distributed parameter groundwater management modeling methods , 1983 .

[15]  R. Andricevic,et al.  Cost-effective network design for groundwater flow monitoring , 1990 .

[16]  L. Jones,et al.  Optimal control of nonlinear groundwater hydraulics using differential dynamic programming , 1987 .

[17]  S. Yakowitz,et al.  Computational aspects of discrete-time optimal control , 1984 .

[18]  R. Allan Freeze,et al.  Updating random hydraulic conductivity fields: A two‐step procedure , 1989 .

[19]  Robert Willis,et al.  Optimization Model for Ground-water Planning , 1984 .

[20]  P. Kitanidis,et al.  Optimization of the pumping schedule in aquifer remediation under uncertainty , 1990 .

[21]  Rangesan Narayanan,et al.  Optimal Control Model for Groundwater Management , 1986 .

[22]  Hasan Yazicigil,et al.  Optimization Model for Groundwater Management in Multi‐Aquifer Systems , 1987 .

[23]  Benjamin F. Hobbs,et al.  Is optimization optimistically biased , 1989 .

[24]  Nien-Sheng Hsu,et al.  Optimum experimental design for parameter identification in groundwater hydrology , 1989 .

[25]  E. G. Vomvoris,et al.  A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations , 1983 .

[26]  R. Willis,et al.  Optimal Control of Nonlinear Groundwater Hydraulics: Theoretical Development and Numerical Experiments , 1985 .

[27]  Larry W. Mays,et al.  Optimal Management of Large‐Scale Aquifers: Methodology and Applications , 1986 .

[28]  Miguel A. Mariño,et al.  Optimal control of groundwater by the feedback method of control , 1989 .

[29]  Gedeon Dagan,et al.  Statistical Inference of Spatial Random Functions , 1986 .