Measuring financial risk with generalized asymmetric least squares regression

Abstract: This paper proposes a generalized asymmetric least squares regression method to estimate Value-at-risk and expected shortfall. By solving an asymmetric least squares regression in a Reproducing Kernel Hilbert Space, the method achieves nonlinear prediction power, while making no assumption on the underlying probability distributions. Two toy datasets are used to demonstrate its nonlinear prediction power. The empirical results on the S&P 500 stock index obviously show that the method is superior to other four benchmark methods.

[1]  W. Wong,et al.  Backtesting Trading Risk of Commercial Banks Using Expected Shortfall , 2008 .

[2]  Clive W. J. Granger,et al.  Modelling the Absolute Returns of Different Stock Indices: Exploring the Forecastability of an Alternative Measure of Risk , 1999 .

[3]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[4]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[5]  B. Rémillard,et al.  Relating quantiles and expectiles under weighted-symmetry , 1995 .

[6]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[7]  Phhilippe Jorion Value at Risk: The New Benchmark for Managing Financial Risk , 2000 .

[8]  Tanya Styblo Beder,et al.  VAR: Seductive but Dangerous , 1995 .

[9]  Mariette Awad,et al.  Dynamic classification for video stream using support vector machine , 2008, Appl. Soft Comput..

[10]  Howell Tong,et al.  Nonlinear Time Series Analysis , 2005, International Encyclopedia of Statistical Science.

[11]  Shouyang Wang,et al.  Progress in Risk Measurement 1 , 2004 .

[12]  M. C. Jones Expectiles and M-quantiles are quantiles , 1994 .

[13]  Kin Keung Lai,et al.  A new fuzzy support vector machine to evaluate credit risk , 2005, IEEE Transactions on Fuzzy Systems.

[14]  James W. Taylor Estimating Value at Risk and Expected Shortfall Using Expectiles , 2007 .

[15]  D. Poirier,et al.  On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function , 1976 .

[16]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[17]  Shouyang Wang,et al.  Forecasting stock market movement direction with support vector machine , 2005, Comput. Oper. Res..

[18]  Shie-Jue Lee,et al.  Employing multiple-kernel support vector machines for counterfeit banknote recognition , 2011, Appl. Soft Comput..

[19]  Satarupa Banerjee,et al.  Text classification: A least square support vector machine approach , 2007, Appl. Soft Comput..

[20]  Bertrand Melenberg,et al.  Backtesting for Risk-Based Regulatory Capital , 2002 .

[21]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[22]  Chung-Ming Kuan,et al.  Assessing Value at Risk With CARE, the Conditional Autoregressive Expectile Models , 2008 .

[23]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[24]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[25]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[26]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[27]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[28]  Zhao Lu,et al.  Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification , 2009, Appl. Soft Comput..

[29]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .