Some performance tests of convex hull algorithms

The two-dimensional convex hull algorithms of Graham, Jarvis, Eddy, and Akl and Toussaint are tested on four different planar point distributions. Some modifications are discussed for both the Graham and Jarvis algorithms. Timings taken of FORTRAN implementations indicate that the Eddy and Akl-Toussaint algorithms are superior on uniform distributions of points in the plane. The Graham algorithm outperforms the others on those distributions where most of the points are on or near the boundary of the hull.

[1]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[2]  William F. Eddy,et al.  A New Convex Hull Algorithm for Planar Sets , 1977, TOMS.

[3]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[4]  Kenneth R. Anderson,et al.  A Reevaluation of an Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1978, Inf. Process. Lett..

[5]  William F. Eddy,et al.  Algorithm 523: CONVEX, A New Convex Hull Algorithm for Planar Sets [Z] , 1977, TOMS.

[6]  Bernard W. Silverman,et al.  Constructing the Convex Hull of a Set of Points in the Plane , 1979, Comput. J..

[7]  Selim G. Akl,et al.  A Fast Convex Hull Algorithm , 1978, Inf. Process. Lett..

[8]  H. Raynaud Sur L'enveloppe convexe des nuages de points aleatoires dans Rn . I , 1970 .

[9]  Donald C. S. Allison,et al.  Usort: An efficient hybrid of Distributive Partitioning Sorting , 1982, BIT Comput. Sci. Sect..

[10]  A. Bykat,et al.  Convex Hull of a Finite Set of Points in Two Dimensions , 1978, Inf. Process. Lett..

[11]  Andrew Chi-Chih Yao,et al.  A Lower Bound to Finding Convex Hulls , 1981, JACM.

[12]  Selim G. Akl,et al.  The Design and Analysis of a New Hybrid Sorting Algorithm , 1980, Inf. Process. Lett..

[13]  Jack Sklansky,et al.  Measuring Concavity on a Rectangular Mosaic , 1972, IEEE Transactions on Computers.

[14]  Ray A. Jarvis,et al.  On the Identification of the Convex Hull of a Finite Set of Points in the Plane , 1973, Inf. Process. Lett..

[15]  A. Rényi,et al.  ZufÄllige konvexe Polygone in einem Ringgebiet , 1968 .

[16]  Selim G. Akl Two Remarks on a Convex Hull Algorithm , 1979, Inf. Process. Lett..