Dynamical Analysis of a Phytoplankton-Zooplankton System with Harvesting Term and Holling III Functional Response

A toxin-producing phytoplankton and zooplankton system is investigated. Considering that zooplankton can be harvested for food in some bodies of water, the harvesting term is introduced to zooplank...

[1]  Wanbiao Ma,et al.  Dynamical behavior of a delay differential equation system on toxin producing phytoplankton and zooplankton interaction , 2014 .

[2]  Yong Wang,et al.  Stability and global Hopf bifurcation in toxic phytoplankton–zooplankton model with delay and selective harvesting , 2013, Nonlinear Dynamics.

[3]  Shovonlal Roy,et al.  Spatial Interaction Among Nontoxic Phytoplankton, Toxic Phytoplankton, and Zooplankton: Emergence in Space and Time , 2008, Journal of biological physics.

[4]  Yong Wang,et al.  Hopf-transcritical bifurcation in toxic phytoplankton–zooplankton model with delay , 2014 .

[5]  Shujing Gao,et al.  Harvesting of a phytoplankton–zooplankton model , 2010 .

[6]  Joydev Chattopadhyay,et al.  Interaction among Non-toxic Phytoplankton, Toxic Phytoplankton and Zooplankton: Inferences from Field Observations , 2007, Journal of biological physics.

[7]  Sandip Banerjee,et al.  Time lags can control algal bloom in two harmful phytoplankton-zooplankton system , 2007, Appl. Math. Comput..

[8]  Ranjit Kumar Upadhyay,et al.  Instabilities and Patterns in Zooplankton-Phytoplankton Dynamics: Effect of Spatial Heterogeneity , 2012 .

[9]  Yang Kuang,et al.  Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters , 2002, SIAM J. Math. Anal..

[10]  Yongzhen Pei,et al.  Evolutionary consequences of harvesting for a two-zooplankton one-phytoplankton system , 2012 .

[11]  Tongqian Zhang,et al.  Dynamical analysis of a reaction-diffusion phytoplankton-zooplankton system with delay , 2017 .

[12]  James Baglama,et al.  Nutrient-phytoplankton-zooplankton models with a toxin , 2006, Math. Comput. Model..

[13]  Jianhong Wu SYMMETRIC FUNCTIONAL DIFFERENTIAL EQUATIONS AND NEURAL NETWORKS WITH MEMORY , 1998 .

[14]  Malay Bandyopadhyay,et al.  Dynamical analysis of toxin producing Phytoplankton-Zooplankton interactions , 2009 .

[15]  Kulbhushan Agnihotri,et al.  Analysis of a toxin producing phytoplankton–zooplankton interaction with Holling IV type scheme and time delay , 2015 .

[16]  Rong Yuan,et al.  Global stability and Hopf-bifurcation in a zooplankton–phytoplankton model , 2014 .

[17]  R. Sarkar,et al.  A delay differential equation model on harmful algal blooms in the presence of toxic substances. , 2002, IMA journal of mathematics applied in medicine and biology.

[18]  S Mandal,et al.  Toxin-producing plankton may act as a biological control for planktonic blooms--field study and mathematical modelling. , 2002, Journal of theoretical biology.

[19]  G. Hallegraeff A review of harmful algal blooms and their apparent global increase , 1993 .

[20]  Xuebing Zhang,et al.  Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion , 2015, Appl. Math. Comput..

[21]  Canrong Tian,et al.  Pattern formation for a model of plankton allelopathy with cross-diffusion , 2011, J. Frankl. Inst..

[22]  R. Bhattacharyya,et al.  Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity , 2006 .

[23]  Ranjit Kumar Upadhyay,et al.  Chaos to Order: Role of Toxin Producing Phytoplankton in Aquatic Systems , 2005 .

[24]  Xia Liu,et al.  Spatio-temporal dynamics near the steady state of a planktonic system , 2018, Comput. Math. Appl..

[25]  Samrat Chatterjee,et al.  Role of toxin and nutrient for the occurrence and termination of plankton bloom - Results drawn from field observations and a mathematical model , 2007, Biosyst..

[26]  Joydev Chattopadhyay,et al.  Nutrient-limited toxin production and the dynamics of two phytoplankton in culture media: A mathematical model , 2008 .

[27]  Shovonlal Roy,et al.  Competing Effects of Toxin-Producing Phytoplankton on Overall Plankton Populations in the Bay of Bengal , 2006, Bulletin of mathematical biology.