Sparse microwave imaging: Principles and applications

This paper provides principles and applications of the sparse microwave imaging theory and technology. Synthetic aperture radar (SAR) is an important method of modern remote sensing. During decades microwave imaging technology has achieved remarkable progress in the system performance of microwave imaging technology, and at the same time encountered increasing complexity in system implementation. The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory, new system and new methodology of microwave imaging. Based on classical SAR imaging model and fundamental theories of sparse signal processing, we can derive the model of sparse microwave imaging, which is a sparse measurement and recovery problem and can be solved with various algorithms. There exist several fundamental points that must be considered in the efforts of applying sparse signal processing to radar imaging, including sparse representation, measurement matrix construction, unambiguity reconstruction and performance evaluation. Based on these considerations, the sparse signal processing could be successfully applied to radar imaging, and achieve benefits in several aspects, including improvement of image quality, reduction of data amount for sparse scene and enhancement of system performance. The sparse signal processing has also been applied in several specific radar imaging applications.

[1]  Shu Xiao,et al.  An N2logN back-projection algorithm for SAR image formation , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[2]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[3]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[4]  Yong Zhang,et al.  An alternating direction method for finding Dantzig selectors , 2010, Comput. Stat. Data Anal..

[5]  Kostas Papathanassiou,et al.  First demonstration of airborne SAR tomography using multibaseline L-band data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[6]  Stéphane Mallat,et al.  Super-Resolution With Sparse Mixing Estimators , 2010, IEEE Transactions on Image Processing.

[7]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[8]  Q. Zhang,et al.  Compressive Sensing in ISAR spectrogram data transmission , 2009, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.

[9]  Mengdao Xing,et al.  Achieving Higher Resolution ISAR Imaging With Limited Pulses via Compressed Sampling , 2009, IEEE Geoscience and Remote Sensing Letters.

[10]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[11]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[12]  Ivana Stojanovic,et al.  Joint space aspect reconstruction of wide-angle SAR exploiting sparsity , 2008, SPIE Defense + Commercial Sensing.

[13]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[14]  Zheng Bao,et al.  High-Resolution ISAR Imaging by Exploiting Sparse Apertures , 2012, IEEE Transactions on Antennas and Propagation.

[15]  Yaakov Tsaig,et al.  Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse , 2008, IEEE Transactions on Information Theory.

[16]  Ali Cafer Gürbüz,et al.  A Compressive Sensing Data Acquisition and Imaging Method for Stepped Frequency GPRs , 2009, IEEE Transactions on Signal Processing.

[17]  Yonina C. Eldar,et al.  Coherence-Based Performance Guarantees for Estimating a Sparse Vector Under Random Noise , 2009, IEEE Transactions on Signal Processing.

[18]  W. Clem Karl,et al.  Compressed sensing of mono-static and multi-static SAR , 2009, Defense + Commercial Sensing.

[19]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[20]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[21]  Jian Li,et al.  Sparse Learning via Iterative Minimization With Application to MIMO Radar Imaging , 2011, IEEE Transactions on Signal Processing.

[22]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[23]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparsity Recovery in the High-Dimensional and Noisy Setting , 2007, IEEE Transactions on Information Theory.

[24]  Qun Zhang,et al.  Reconstruction of Moving Target's HRRP Using Sparse Frequency-Stepped Chirp Signal , 2011, IEEE Sensors Journal.

[25]  Mike E. Davies,et al.  Gradient Pursuits , 2008, IEEE Transactions on Signal Processing.

[26]  江海,et al.  RANDOM NOISE SAR BASED ON COMPRESSED SENSING , 2011 .

[27]  Weixian Tan,et al.  Compressed sensing technique for circular SAR imaging , 2009 .

[28]  Yonina C. Eldar,et al.  Xampling: Compressed Sensing of Analog Signals , 2011, Compressed Sensing.

[29]  Joachim H. G. Ender,et al.  On compressive sensing applied to radar , 2010, Signal Process..

[30]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[31]  Guangyou Fang,et al.  UWB Through-Wall Imaging Based on Compressive Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[32]  C. Wiley Synthetic Aperture Radars , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[33]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[34]  X.-C. Xie,et al.  High-resolution imaging of moving train by ground-based radar with compressive sensing , 2010 .

[35]  D. Wehner High Resolution Radar , 1987 .

[36]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[37]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[38]  R. Keith Raney,et al.  Precision SAR processing using chirp scaling , 1994, IEEE Trans. Geosci. Remote. Sens..

[39]  Yoram Bresler,et al.  O(N2log2N) filtered backprojection reconstruction algorithm for tomography , 2000, IEEE Trans. Image Process..

[40]  K. Xuan,et al.  0.18μm CMOS dual-band low-noise amplifier for ZigBee development , 2010 .

[41]  Richard Bamler,et al.  Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[42]  M. J. Rycroft,et al.  Radar signals: An introduction to theory and application , 1995 .

[43]  Mengdao Xing,et al.  ISAR Imaging via Sparse Probing Frequencies , 2011, IEEE Geoscience and Remote Sensing Letters.

[44]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[45]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[46]  Richard Bamler,et al.  Within the resolution cell: Super-resolution in tomographic SAR imaging , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[47]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[48]  Jérôme Darbon,et al.  A Simple Compressive Sensing Algorithm for Parallel Many-Core Architectures , 2013, J. Signal Process. Syst..

[49]  Hai Jiang,et al.  Multi-channel SAR imaging based on distributed compressive sensing , 2011, Science China Information Sciences.

[50]  W. Carrara,et al.  Spotlight synthetic aperture radar : signal processing algorithms , 1995 .

[51]  C. J. Baker,et al.  High resolution processing of hybrid strip-map/spotlight mode SAR , 1996 .

[52]  Gitta Kutyniok,et al.  1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .

[53]  Shengli Zhou,et al.  Signal extraction using Compressed Sensing for passive radar with OFDM signals , 2008, 2008 11th International Conference on Information Fusion.

[54]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[55]  Bo Liu,et al.  Sparsesense: Application of compressed sensing in parallel MRI , 2008, 2008 International Conference on Information Technology and Applications in Biomedicine.

[56]  B. Russell History of Western philosophy , 1949 .

[57]  Motoyuki Sato,et al.  Pre-stack migration applied to GPR for landmine detection , 2004 .

[58]  Alberto Moreira,et al.  A comparison of several algorithms for SAR raw data compression , 1995, IEEE Trans. Geosci. Remote. Sens..

[59]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[60]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[61]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[62]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[63]  Wotao Yin,et al.  FIXED-POINT CONTINUATION APPLIED TO COMPRESSED SENSING: IMPLEMENTATION AND NUMERICAL EXPERIMENTS * , 2010 .

[64]  P.P. Vaidyanathan,et al.  Compressed sensing in MIMO radar , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[65]  Ram M. Narayanan,et al.  Compressive radar imaging using white stochastic waveforms , 2010, 2010 International Waveform Diversity and Design Conference.

[66]  B. Mulgrew,et al.  Synthetic Aperture Radar raw data encoding using Compressed Sensing , 2008, 2008 IEEE Radar Conference.

[67]  Peter Willett,et al.  Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing , 2009 .

[68]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[69]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[70]  J. P. Ruina,et al.  Some Early Developments in Synthetic Aperture Radar Systems , 1962, IRE Transactions on Military Electronics.

[71]  Richard G Baraniuk,et al.  More Is Less: Signal Processing and the Data Deluge , 2011, Science.

[72]  Deanna Needell,et al.  Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit , 2007, IEEE Journal of Selected Topics in Signal Processing.

[73]  David B. Dunson,et al.  Multitask Compressive Sensing , 2009, IEEE Transactions on Signal Processing.

[74]  Thomas Baldwin Moore, G. E. , 2013 .

[75]  Shengli Zhou,et al.  Signal Processing for Passive Radar Using OFDM Waveforms , 2010, IEEE Journal of Selected Topics in Signal Processing.

[76]  Yaakov Tsaig,et al.  Extensions of compressed sensing , 2006, Signal Process..

[77]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[78]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[79]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[80]  Martin Vetterli,et al.  Directional wavelet transforms and frames , 2002, Proceedings. International Conference on Image Processing.

[81]  Leonard J. Porcello,et al.  An introduction to synthetic-aperture radar , 1969, IEEE Spectrum.

[82]  Gang Li,et al.  SAR Imaging of Moving Targets via Compressive Sensing , 2010, 2010 International Conference on Electrical and Control Engineering.

[83]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[84]  Thomas Strohmer,et al.  High-Resolution Radar via Compressed Sensing , 2008, IEEE Transactions on Signal Processing.

[85]  Richard Bamler,et al.  Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[86]  D. Daniels Ground Penetrating Radar , 2005 .

[87]  J.H. McClellan,et al.  Compressive Sensing for GPR Imaging , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[88]  J. Mittermayer,et al.  Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[89]  Alexander Yarovoy,et al.  A Compressive SFCW-GPR System , 2008 .

[90]  Richard G. Baraniuk,et al.  Theory and Implementation of an Analog-to-Information Converter using Random Demodulation , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[91]  Shengli Zhou,et al.  Compressed sensing for OFDM/MIMO radar , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[92]  Venkatesh Saligrama,et al.  Information Theoretic Bounds for Compressed Sensing , 2008, IEEE Transactions on Information Theory.

[93]  Hai Jiang,et al.  SNR analysis for SAR imaging from raw data via compressed sensing , 2012 .

[94]  Yonina C. Eldar,et al.  Xampling--Part I: Practice , 2009, ArXiv.

[95]  Yuxi Zhang,et al.  A novel spaceborne SAR wide-swath imaging approach based on Poisson disk-like nonuniform sampling and compressive sensing , 2012, Science China Information Sciences.

[96]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[97]  P. Stoica,et al.  MIMO Radar Signal Processing , 2008 .

[98]  T. Blumensath,et al.  Fast Encoding of Synthetic Aperture Radar Raw Data using Compressed Sensing , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[99]  Igal Bilik,et al.  Compressive sensing-based SAR tomography , 2010, 2010 IEEE Radar Conference.

[100]  Yachao Li,et al.  High-Resolution ISAR Imaging With Sparse Stepped-Frequency Waveforms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[101]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[102]  Victoria Stodden,et al.  Breakdown Point of Model Selection When the Number of Variables Exceeds the Number of Observations , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[103]  Julie Ann Jackson,et al.  Three-dimensional sparse-aperture moving-target imaging , 2008, SPIE Defense + Commercial Sensing.

[104]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[105]  R. Bamler,et al.  Very high Resolution SAR tomography via Compressive Sensing , 2009 .

[106]  Emre Ertin,et al.  Sparse multipass 3D SAR imaging: applications to the GOTCHA data set , 2009, Defense + Commercial Sensing.

[107]  H. Vincent Poor,et al.  Distributed MIMO radar using compressive sampling , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[108]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[109]  Richard Bamler,et al.  A comparison of range-Doppler and wavenumber domain SAR focusing algorithms , 1992, IEEE Trans. Geosci. Remote. Sens..

[110]  B. Mahafza,et al.  Three-dimensional SAR imaging using linear array in transverse motion , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[111]  Richard Bamler,et al.  Compressive sensing for high resolution differential SAR tomography - the SL1MMER algorithm , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[112]  F. Ye,et al.  ISAR enhancement technology based on compressed sensing , 2011 .

[113]  Richard G. Baraniuk,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[114]  David L. Donoho,et al.  Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[115]  Emmanuel J. Candès,et al.  Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..

[116]  Xiang-Gen Xia,et al.  ISAR imaging of uniformly rotating targets via parametric weighted L1 minimization , 2011, 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[117]  Shengli Zhou,et al.  Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing , 2009, OCEANS 2009-EUROPE.

[118]  H. Vincent Poor,et al.  MIMO Radar Using Compressive Sampling , 2009, IEEE Journal of Selected Topics in Signal Processing.

[119]  José M. Bioucas-Dias,et al.  Two-Step Algorithms for Linear Inverse Problems with Non-Quadratic Regularization , 2007, 2007 IEEE International Conference on Image Processing.

[120]  洪文,et al.  Synthetic Aperture Radar Imaging of Sparse Targets via Compressed Sensing , 2011 .

[121]  W. Clem Karl,et al.  Compressed Sensing of Monostatic and Multistatic SAR , 2013, IEEE Geoscience and Remote Sensing Letters.

[122]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[123]  洪文,et al.  Along-track interferometric SAR imaging based on distributed compressed sensing , 2010 .

[124]  W. Clem Karl,et al.  Imaging of Moving Targets With Multi-Static SAR Using an Overcomplete Dictionary , 2009, IEEE Journal of Selected Topics in Signal Processing.

[125]  P. Townsend Principles and Applications of Imaging Radar: Manual of Remote Sensing , 2000 .

[126]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[127]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[128]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[129]  Martin J. Wainwright,et al.  Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting , 2009, IEEE Trans. Inf. Theory.

[130]  Aggelos K. Katsaggelos,et al.  Non-convex priors in Bayesian compressed sensing , 2009, 2009 17th European Signal Processing Conference.

[131]  Richard H. Sherman,et al.  Chaotic communications in the presence of noise , 1993, Optics & Photonics.

[132]  Sandeep Gogineni,et al.  Target Estimation Using Sparse Modeling for Distributed MIMO Radar , 2011, IEEE Transactions on Signal Processing.

[133]  Xu Hao,et al.  Compressive sensing MIMO radar imaging based on inverse scattering model , 2010, IEEE 10th INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS.

[134]  M. Suess,et al.  A novel high resolution, wide swath SAR system , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[135]  R. Stolt MIGRATION BY FOURIER TRANSFORM , 1978 .

[136]  Yonina C. Eldar Compressed Sensing of Analog Signals in Shift-Invariant Spaces , 2008, IEEE Transactions on Signal Processing.

[137]  Jianwei Ma,et al.  Applications of Compressed Sensing for SAR Moving-Target Velocity Estimation and Image Compression , 2011, IEEE Transactions on Instrumentation and Measurement.

[138]  Ron Kwok,et al.  Block adaptive quantization of Magellan SAR data , 1989 .

[139]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[140]  Moeness G. Amin,et al.  Compressed sensing technique for high-resolution radar imaging , 2008, SPIE Defense + Commercial Sensing.

[141]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[142]  Zhibo Chen,et al.  A novel image/video coding method based on Compressed Sensing theory , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[143]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[144]  Harry Nyquist Certain Topics in Telegraph Transmission Theory , 1928 .

[145]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[146]  W. Brown Synthetic Aperture Radar , 1967, IEEE Transactions on Aerospace and Electronic Systems.

[147]  Daniel W. Bliss,et al.  Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution , 2003, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003.

[148]  Francesco De Zan,et al.  TOPSAR: Terrain Observation by Progressive Scans , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[149]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[150]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[151]  F. Henderson,et al.  Principles and Applications of Imaging Radar , 1998 .

[152]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[153]  Thomas Strohmer,et al.  Compressed sensing for MIMO radar - algorithms and performance , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[154]  Jiashun Jin,et al.  Feature selection by higher criticism thresholding achieves the optimal phase diagram , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[155]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[156]  Paco López-Dekker,et al.  A Novel Strategy for Radar Imaging Based on Compressive Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[157]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[158]  C. Leuschen,et al.  Surface-Penetrating Radar for Mars Exploration , 2001 .

[159]  Richard Bamler,et al.  Tomographic SAR Inversion by $L_{1}$ -Norm Regularization—The Compressive Sensing Approach , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[160]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[161]  Yonina C. Eldar,et al.  Xampling: Analog to digital at sub-Nyquist rates , 2009, IET Circuits Devices Syst..

[162]  Wen Hong,et al.  Waveform design for L q regularization based radar imaging and an approach to radar imaging with non-moving platform , 2012 .

[163]  R.G. Baraniuk,et al.  Distributed Compressed Sensing of Jointly Sparse Signals , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[164]  Michael Elad,et al.  Applications of Sparse Representation and Compressive Sensing , 2010, Proc. IEEE.

[165]  Yachao Li,et al.  Resolution Enhancement for Inversed Synthetic Aperture Radar Imaging Under Low SNR via Improved Compressive Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[166]  Mehrdad Soumekh,et al.  Reconnaissance with slant plane circular SAR imaging , 1996, IEEE Trans. Image Process..

[167]  E. Candès,et al.  Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges , 2000 .

[168]  Wang Yao,et al.  L 1/2 regularization , 2010 .

[169]  H. Vincent Poor,et al.  Measurement Matrix Design for Compressive Sensing–Based MIMO Radar , 2011, IEEE Transactions on Signal Processing.

[170]  N. Farhat,et al.  Prospects for three‐dimensional projective and tomographic imaging radar networks , 1984 .

[171]  Ye Tian,et al.  An evaluation method for sparse microwave imaging radar system using phase diagrams , 2011, Proceedings of 2011 IEEE CIE International Conference on Radar.

[172]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[173]  Kush R. Varshney,et al.  Joint image formation and anisotropy characterization in wide-angle SAR , 2006, SPIE Defense + Commercial Sensing.

[174]  Rick S. Blum,et al.  MIMO radar: an idea whose time has come , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[175]  Zhe Zhang,et al.  Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data , 2012, Science China Information Sciences.

[176]  Mircea Andrecut,et al.  Fast GPU Implementation of Sparse Signal Recovery from Random Projections , 2008, Eng. Lett..

[177]  D. Massonnet,et al.  Imaging with Synthetic Aperture Radar , 2008 .

[178]  Burton R. Saltzberg,et al.  Multi-Carrier Digital Communications: Theory and Applications of Ofdm , 1999 .

[179]  Giampaolo Ferraioli,et al.  Three dimensional reconstruction using COSMO-SkyMed high-resolution data , 2011, 2011 MICROWAVES, RADAR AND REMOTE SENSING SYMPOSIUM.

[180]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[181]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[182]  Francesco Soldovieri,et al.  A fast data acquisition and processing scheme for through-the-wall radar imaging , 2011, Defense + Commercial Sensing.

[183]  V.,et al.  On the Problem of Time Jitter in Sampling * , 1998 .

[184]  Ching-Hua Chang,et al.  Compressed sensing MRI with multichannel data using multicore processors , 2010, Magnetic resonance in medicine.

[185]  D.J. Brady,et al.  Compression at the Physical Interface , 2008, IEEE Signal Processing Magazine.

[186]  Emre Ertin,et al.  Sparsity and Compressed Sensing in Radar Imaging , 2010, Proceedings of the IEEE.

[187]  Rama Chellappa,et al.  Compressed Synthetic Aperture Radar , 2010, IEEE Journal of Selected Topics in Signal Processing.

[188]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[189]  Ali Cafer Gürbüz,et al.  Compressive sensing for subsurface imaging using ground penetrating radar , 2009, Signal Process..

[190]  Ali Cafer Gürbüz,et al.  GPR Imaging Using Compressed Measurements , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[191]  R. Jordan The Seasat-A synthetic aperture radar system , 1980, IEEE Journal of Oceanic Engineering.

[192]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[193]  R. Baraniuk,et al.  Compressive Radar Imaging , 2007, 2007 IEEE Radar Conference.

[194]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[195]  Gilda Schirinzi,et al.  Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[196]  Andriyan Bayu Suksmono,et al.  Compressive Stepped-Frequency Continuous-Wave Ground-Penetrating Radar , 2010, IEEE Geoscience and Remote Sensing Letters.

[197]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.