Uses of cumulants in wavelet analysis

Cumulants are useful in studying nonlinear phenomena and in developing (approximate) statistical properties of quantities computed from random process data. Wavelet analysis is a powerful tool for the approximation and estimation of curves and surfaces. This work considers wavelets and cumulants, developing some sampling properties of wavelet fits to a signal in the presence of additive stationary noise via the calculus of cumulants. Of some concern is the construction of approximate confidence bounds around a fit. Both linear and shrunken wavelet estimates are considered. Extensions to spatial processes, irregularly observed processes and long memory processes are discussed. The usefulness of the cumulants lies in their employment to develop some of the statistical properties of the estimates.

[1]  D. Brillinger The spectral analysis of stationary interval functions , 1972 .

[2]  D. Brillinger Estimation of the mean of a stationary time series by sampling , 1973, Journal of Applied Probability.

[3]  L. Saulis,et al.  A general lemma on probabilities of large deviations , 1978 .

[4]  David R. Brillinger,et al.  Time Series: Data Analysis and Theory. , 1982 .

[5]  Wolfgang Härdle,et al.  SOME THEORY ON M‐SMOOTHING OF TIME SERIES , 1986 .

[6]  Approximation theorems for double orthogonal series, II , 1987 .

[7]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[8]  D. Cox,et al.  Asymptotic techniques for use in statistics , 1989 .

[9]  Shean-Tsong Chiu,et al.  Bandwidth selection for kernel estimate with correlated noise , 1989 .

[10]  Yoshihiro Yajima,et al.  A CENTRAL LIMIT THEOREM OF FOURIER TRANSFORMS OF STRONGLY DEPENDENT STATIONARY PROCESSES , 1989 .

[11]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[12]  P. Robinson,et al.  Nonparametric function estimation for long memory time series , 1991 .

[13]  J. Hart Kernel regression estimation with time series errors , 1991 .

[14]  Hans R. Künsch,et al.  Dependence Among Observations: Consequences and Methods to Deal With it , 1991 .

[15]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[16]  G. Walter Approximation of the delta function by wavelets , 1992 .

[17]  G. Kerkyacharian,et al.  Density estimation in Besov spaces , 1992 .

[18]  Young K. Truoung Nonparametric curve estimation with time series errors , 1992 .

[19]  D. Donoho Unconditional Bases Are Optimal Bases for Data Compression and for Statistical Estimation , 1993 .

[20]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[21]  David L. Donoho,et al.  Nonlinear Wavelet Methods for Recovery of Signals, Densities, and Spectra from Indirect and Noisy Da , 1993 .

[22]  R. Strichartz How to Make Wavelets , 1993 .

[23]  Y. Wang Function estimation via wavelets for data with long-range dependence , 1994, Proceedings of 1994 Workshop on Information Theory and Statistics.

[24]  D. Brillinger,et al.  High-resolution tracking of microtubule motility driven by a single kinesin motor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Antoniadis,et al.  Wavelet Methods for Curve Estimation , 1994 .

[26]  Anestis Antoniadis,et al.  Wavelet methods for smoothing noisy data , 1994 .

[27]  D. Donoho On Minimum Entropy Segmentation , 1994 .

[28]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[29]  V. Statulevičius,et al.  On Large Deviations in the Poisson Approximation , 1994 .

[30]  Jeffrey D. Hart,et al.  Automated Kernel Smoothing of Dependent Data by Using Time Series Cross‐Validation , 1994 .

[31]  G. Walter Wavelets and other orthogonal systems with applications , 1994 .

[32]  D. Brillinger Some river wavelets , 1994 .

[33]  Peter Guttorp,et al.  Long-Memory Processes, the Allan Variance and Wavelets , 1994 .

[34]  Mark Kon,et al.  Local Convergence for Wavelet Expansions , 1994 .

[35]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[36]  Yazhen Wang Jump and sharp cusp detection by wavelets , 1995 .

[37]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[38]  Peter Hall,et al.  On wavelet methods for estimating smooth functions , 1995 .

[39]  S. E. Kelly,et al.  Gibbs Phenomenon for Wavelets , 1996 .