STRONGER REFLECTION FROM BLACK HOLE ACCRETION DISKS IN SOFT X-RAY STATES

We analyze 15,000 spectra of 29 stellar-mass black hole (BH) candidates collected over the 16 year mission lifetime of Rossi X-ray Timing Explorer using a simple phenomenological model. As these BHs vary widely in luminosity and progress through a sequence of spectral states, which we broadly refer to as hard and soft, we focus on two spectral components: the Compton power law and the reflection spectrum it generates by illuminating the accretion disk. Our proxy for the strength of reflection is the equivalent width of the Fe–K line as measured with respect to the power law. A key distinction of our work is that for all states we estimate the continuum under the line by excluding the thermal disk component and using only the component that is responsible for fluorescing the Fe–K line, namely, the Compton power law. We find that reflection is several times more pronounced (∼3) in soft compared to hard spectral states. This is most readily caused by the dilution of the Fe line amplitude from Compton scattering in the corona, which has a higher optical depth in hard states. Alternatively, this could be explained by a more compact corona in soft (compared to hard) states, which would result in a higher reflection fraction.

[1]  J. Orosz,et al.  THE MASS OF THE BLACK HOLE IN THE X-RAY BINARY NOVA MUSCAE 1991 , 2015, 1601.00616.

[2]  G. Pooley,et al.  X-RAY SPECTRAL ANALYSIS OF THE STEADY STATES OF GRS1915+105 , 2015, 1509.08941.

[3]  S. Laycock,et al.  Chandra and XMM monitoring of the black hole X-ray binary IC 10 X-1 , 2014, 1410.3417.

[4]  D. Steeghs,et al.  A PARALLAX DISTANCE TO THE MICROQUASAR GRS 1915+105 AND A REVISED ESTIMATE OF ITS BLACK HOLE MASS , 2014, 1409.2453.

[5]  V. Grinberg,et al.  AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE PCA SPECTRA , 2014, 1601.06174.

[6]  A. Fabian,et al.  The role of the reflection fraction in constraining black hole spin , 2014, 1408.2347.

[7]  A. Merloni,et al.  Observational Appearance of Black Holes in X-Ray Binaries and AGN , 2014 .

[8]  P. Uttley,et al.  Power-Colours: Simple X-ray Binary Variability Comparison , 2014, 1405.2024.

[9]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[10]  Javier A. García,et al.  IMPROVED REFLECTION MODELS OF BLACK HOLE ACCRETION DISKS: TREATING THE ANGULAR DISTRIBUTION OF X-RAYS , 2013, 1312.3231.

[11]  R. Narayan,et al.  Black Hole Spin via Continuum Fitting and the Role of Spin in Powering Transient Jets , 2013, 1303.1583.

[12]  C. Reynolds,et al.  Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy , 2013, 1302.3260.

[13]  Keith Jahoda,et al.  ADVANCES IN THE RXTE PROPORTIONAL COUNTER ARRAY CALIBRATION: NEARING THE STATISTICAL LIMIT , 2012, 1208.2000.

[14]  G. Ponti,et al.  Ubiquitous equatorial accretion disc winds in black hole soft states , 2012, 1201.4172.

[15]  N. Kawai,et al.  Combined Spectral and Timing Analysis of the Black Hole Candidate MAXI J1659−152, Discovered by MAXI and Swift , 2011, 1110.6512.

[16]  N. Kawai,et al.  A Spectral Study of the Black Hole Candidate XTE J1752-223 in the High/Soft State with MAXI, Suzaku and Swift , 2011, 1109.1378.

[17]  N. Masetti,et al.  Spectral evolution of the X-ray nova XTE J1859+226 during its outburst observed by BeppoSAX and RXTE , 2011, 1211.1270.

[18]  J. Rodriguez,et al.  First simultaneous multi-wavelength observations of the black hole candidate IGR J17091 3624 ATCA, INTEGRAL, Swift, and RXTE views of the 2011 outburst , 2011, 1108.0666.

[19]  J. Orosz,et al.  The spin of the black hole microquasar XTE J1550−564 via the continuum-fitting and Fe-line methods , 2010, 1010.1013.

[20]  R. Narayan,et al.  THE CONSTANT INNER-DISK RADIUS OF LMC X-3: A BASIS FOR MEASURING BLACK HOLE SPIN , 2010, 1006.5729.

[21]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[22]  Javier A. García,et al.  X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. I. CONSTANT DENSITY ATMOSPHERES , 2010, 1006.0485.

[23]  C. Done,et al.  A strong and broad Fe line in the XMM-Newton spectrum of the new X-ray transient and black hole candidate XTE J1652-453 , 2010, 1004.4442.

[24]  T. Belloni,et al.  A global spectral study of black hole X-ray binaries , 2009, 0912.0142.

[25]  J. Rodriguez,et al.  Detailed radio to soft γ-ray studies of the 2005 outburst of the new X-ray transient XTE J1818-245 , 2009, 0903.4714.

[26]  J. Orosz,et al.  A DETERMINATION OF THE SPIN OF THE BLACK HOLE PRIMARY IN LMC X-1 , 2009, 0901.0920.

[27]  R. Narayan,et al.  A Simple Comptonization Model , 2008, 0810.1758.

[28]  Cambridge,et al.  X‐ray reflection in accreting stellar‐mass black hole systems , 2007, 0709.0270.

[29]  D. Steeghs,et al.  THE 2003 OUTBURST OF THE X-RAY TRANSIENT H1743−322: COMPARISONS WITH THE BLACK HOLE MICROQUASAR XTE J1550−564 , 2007, 0705.1034.

[30]  J. McClintock,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[31]  R. Shafee,et al.  The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105 , 2006, astro-ph/0606076.

[32]  C. B. Markwardt,et al.  Calibration of the Rossi X-Ray Timing Explorer Proportional Counter Array , 2005, astro-ph/0511531.

[33]  J. Tomsick,et al.  X-Ray Observations of the Black Hole Transient 4U 1630–47 during 2 Years of X-Ray Activity , 2005, astro-ph/0505271.

[34]  R. Ross,et al.  A comprehensive range of X-ray ionized-reflection models , 2005, astro-ph/0501116.

[35]  T. Belloni,et al.  The Evolution of Black Hole States , 2004, astro-ph/0412597.

[36]  T. Belloni,et al.  A Unified Model for Black Hole X-Ray Binary Jets? , 2004, astro-ph/0506469.

[37]  D. Steeghs,et al.  The Distance and Interstellar Sight Line to GX 339–4 , 2004, astro-ph/0402408.

[38]  M. Gilfanov,et al.  Correlations between X-ray and radio spectral properties of accreting black holes , 2002, astro-ph/0209363.

[39]  Cambridge,et al.  The effects of a Comptonizing corona on the appearance of the reflection components in accreting black hole spectra , 2001, astro-ph/0108342.

[40]  J. Orosz,et al.  Complete RXTE Spectral Observations of the Black Hole X-ray Nova XTE J1550–564 , 2000, astro-ph/0005599.

[41]  D. Smith,et al.  Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries , 1998, astro-ph/9812215.

[42]  W. Cui,et al.  Black Hole Spin in X-Ray Binaries: Observational Consequences , 1997, astro-ph/9704072.

[43]  A. Fabian,et al.  The effects of photoionization on X-ray reflection spectra in active galactic nuclei , 1993 .

[44]  A. Fabian,et al.  Constraints on the absorption-dominated model for the X-ray spectrum of MCG–6-30-15 , 1989, 0904.3099.

[45]  Nicholas E. White,et al.  X-ray fluorescence from the inner disc in Cygnus X-1 , 1989 .

[46]  A. Toor,et al.  The Crab nebula as a calibration source for X-ray astronomy. , 1974 .

[47]  S. C. Orbel,et al.  X-RAY OBSERVATIONS OF THE BLACK HOLE TRANSIENT 4 U 1630 – 47 DURING TWO YEARS OF X-RAY ACTIVITY , 2008 .

[48]  J. Dickey,et al.  H I in the Galaxy , 1990 .