Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum

[1]  Xiaodong Han,et al.  In situ experimental mechanics of nanomaterials at the atomic scale , 2013 .

[2]  D. Farkas,et al.  The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films , 2012 .

[3]  Colleen N. Loynachan,et al.  Size-dependent deformation of nanocrystalline Pt nanopillars. , 2012, Nano letters.

[4]  Y. Mishin,et al.  Grain boundary migration and grain rotation studied by molecular dynamics , 2012 .

[5]  Julia R. Greer,et al.  Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect , 2011 .

[6]  R. Spolenak,et al.  Thermo mechanical properties and plastic deformation of gold nanolines and gold thin films , 2011 .

[7]  Huajian Gao,et al.  Is stress concentration relevant for nanocrystalline metals? , 2011, Nano letters.

[8]  Pan Liu,et al.  Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films , 2011 .

[9]  Ze Zhang,et al.  Transmission electron microscopy observations of dislocation annihilation and storage in nanograins , 2011 .

[10]  Ze Zhang,et al.  In situ observation of dislocation behavior in nanometer grains. , 2010, Physical review letters.

[11]  D. Gianola,et al.  Experimental Observations of Stress-Driven Grain Boundary Migration , 2009, Science.

[12]  J. Monk,et al.  Strain-driven grain boundary motion in nanocrystalline materials , 2008 .

[13]  D. Gianola,et al.  In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films , 2008 .

[14]  I. Ovid’ko,et al.  Special rotational deformation in nanocrystalline metals and ceramics , 2008 .

[15]  Diana Farkas,et al.  Linear grain growth kinetics and rotation in nanocrystalline Ni. , 2007, Physical review letters.

[16]  A. S. Argon,et al.  The strongest size , 2006 .

[17]  J. Li,et al.  Mechanical grain growth in nanocrystalline copper. , 2006, Physical review letters.

[18]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[19]  Ronald O. Scattergood,et al.  Ultrahigh strength and high ductility of bulk nanocrystalline copper , 2005 .

[20]  Xiaoqin Yan,et al.  Comment on "Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel" , 2005, Science.

[21]  A. Mukherjee,et al.  Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments? , 2005 .

[22]  Andrew M. Minor,et al.  Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature , 2004 .

[23]  J. Taylor,et al.  A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation , 2004 .

[24]  E. A. Stach,et al.  Grain Boundary-Mediated Plasticity in Nanocrystalline Nickel , 2004, Science.

[25]  H. Kitagawa,et al.  Mechanical Properties Depending on Grain Sizes of Face-Centered-Cubic Nanocrystalline Metals Using Molecular Dynamics Simulation , 2004 .

[26]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[27]  I. Ovid’ko,et al.  Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials , 2003 .

[28]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[29]  R. Würschum,et al.  Diffusion in Nanocrystalline Metals and Alloys—A Status Report , 2003 .

[30]  Johannes Weertman,et al.  In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films , 2003 .

[31]  S. Phillpot,et al.  Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation , 2003 .

[32]  Peter M. Derlet,et al.  Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation , 2002 .

[33]  S. Takaki,et al.  Atomic-Level Observation of Disclination Dipoles in Mechanically Milled, Nanocrystalline Fe , 2002, Science.

[34]  P. Derlet,et al.  The role played by two parallel free surfaces in the deformation mechanism of nanocrystalline metals: A molecular dynamics simulation , 2002 .

[35]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[36]  K. Lu,et al.  Low temperature creep of nanocrystalline pure copper , 2000 .

[37]  C. Pande,et al.  Yield stress of fine grained materials , 1998 .

[38]  Sidney Yip,et al.  Nanocrystals: The strongest size , 1998, Nature.

[39]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[40]  Ning Wang,et al.  Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique , 1997 .

[41]  A. Mukherjee,et al.  Geometrical aspects of superplastic flow , 1996 .

[42]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[43]  W. W. Milligan,et al.  IN SITU STUDIES OF DEFORMATION AND FRACTURE IN NANOPHASE MATERIALS , 1993 .

[44]  A. Rosen,et al.  On the validity of the hall-petch relationship in nanocrystalline materials , 1989 .

[45]  R. Birringer,et al.  Diffusion in nanocrystalline material , 1987 .

[46]  B. Predel,et al.  GENERALIZED REPRESENTATION OF GRAIN BOUNDARY SELF-DIFFUSION DATA , 1985 .

[47]  Michael F. Ashby,et al.  Application of bound theorems for creeping solids and their application to large strain diffusional flow , 1978 .

[48]  Y. Murakami,et al.  Relative motion of grains during superplastic flow in an Al-9Zn-1 wt.%Mg alloy , 1977 .

[49]  R. C. Gifkins Grain-boundary sliding and its accommodation during creep and superplasticity , 1976 .

[50]  Michael F. Ashby,et al.  Diffusion-accommodated flow and superplasticity , 1973 .

[51]  F. Nabarro Steady-state diffusional creep , 1967 .

[52]  James C. M. Li,et al.  Possibility of Subgrain Rotation during Recrystallization , 1962 .

[53]  R. Bullough,et al.  Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[55]  Hans-Joachim Bungartz,et al.  Molecular Dynamics Simulation , 2015 .

[56]  J. Raskin,et al.  Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films : an in situ TEM study , 2013 .

[57]  D. Wolf,et al.  Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation , 2004, Nature materials.

[58]  C. Herzig,et al.  Grain Boundary Diffusion in Metals: Recent Developments , 2003 .

[59]  Y. Mishin,et al.  Fundamentals of grain and interphase boundary diffusion , 1995 .

[60]  F. J. Humphreys Chapter 10 – RECRYSTALLIZATION TEXTURES , 1995 .

[61]  J. Haile Molecular Dynamics Simulation , 1992 .

[62]  T. Bieler,et al.  Superplasticity in metals and ceramics , 1989 .

[63]  D. Lee The strain rate dependent plastic flow behavior of zirconium and its alloys , 1970 .