Theory, Design and Development of Artificial Magnetic Materials

Artificial Magnetic Materials (AMMs) are a subgroup of metamaterials which are engineered to provide desirable magnetic properties not seen in natural materials. These artificial structures are designed to provide either negative or enhanced positive (higher than one) relative permeability. AMMs with negative permeability are used to develop Single Negative (SNG), or Double Negative (DNG) metamaterials. AMMs with enhanced positive permeability are used to provide magnetodielectric materials at microwave frequencies where the natural magnetic materials fail to work efficiently. AMMs are realized by embedding metallic resonators in a host dielectric. These inclusions provide desirable magnetic properties near their resonance frequency. Artificial magnetic materials used as SNG, or DNG have many applications such as: sub-wavelength cavity resonators, sub-wavelength parallel-plate wave guides, sub-wavelength cylindrical and spherical coreshell systems, efficient electrically small dipole antennas, super lenses, THz active devices, sensitivity enhancement nearfield probes using double and single negative media, and mutual coupling reduction between antennas. On the other hand, artificial magnetic materials used as magneto-dielectrics have other applications in developing enhanced bandwidth efficient miniaturized antennas, low profile enhanced gain antennas using artificial magnetic superstrates, wide band woodpile Electromagnetic Band Gap (EBG) structures, EBGs with enhanced in-phase reflection bandwidth used as artificial magnetic ground planes. In this thesis, several advances are added to the existing knowledge of developing artificial magnetic materials, in terms of analytical modeling, applications, realization, and experimental characterization. To realize AMMs with miniaturized unit cells, new inclusions based on fractal Hilbert curves are introduced, and analyzed. Analytical models, numerical full wave simulation, and experimental characterization are used to analyze, and study the new structures. A comprehensive comparison is made between the new inclusions, and perviously developed inclusions in terms of electromagnetic properties. The new inclusions have advantages of miniaturization, and less dispersion when compared to the existing structures in the literature. To realize multi-band AMMs, unit cells with multiple inclusions are proposed, designed, and analyzed. The new unit cells can be designed to give the desired magnetic properties either over distinguished multiple frequency bands, or over a

[1]  J.W. Bandler,et al.  Space mapping optimization of microwave circuits exploiting surrogate models , 2000, 2000 IEEE MTT-S International Microwave Symposium Digest (Cat. No.00CH37017).

[2]  R. Hansen Effects of a high-impedance screen on a dipole antenna , 2002, IEEE Antennas and Wireless Propagation Letters.

[3]  D. Smith,et al.  Characterization of a planar artificial magnetic metamaterial surface. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  E. J. Vanzura,et al.  Improved technique for determining complex permittivity with the transmission/reflection method , 1990 .

[5]  S‐Parameter broadband measurements of microstrip lines and extraction of the substrate intrinsic properties , 2001 .

[6]  S. Ramo,et al.  Fields and Waves in Communication Electronics , 1966 .

[7]  John W. Bandler,et al.  A hybrid aggressive space mapping algorithm for EM optimization , 1999, IMS 1999.

[8]  O. Ramahi,et al.  BROADBAND EXPERIMENTAL CHARACTERIZATION OF ARTIFICIAL MAGNETIC MATERIALS BASED ON A MICROSTRIP LINE METHOD , 2009 .

[9]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[10]  S. Tretyakov Analytical Modeling in Applied Electromagnetics , 2003 .

[11]  K. Buell Development of engineered magnetic materials for antenna applications. , 2005 .

[12]  S. A. Tretyakov,et al.  Comments on “Design and Modeling of Patch Antenna Printed on Magnetodielectric Embedded-Circuit Metasubstrate” , 2007 .

[13]  William D. Callister,et al.  Materials Science and Engineering: An Introduction , 1985 .

[14]  P. ̌'ik Miniaturization of Patch Antennas with New Artificial Magnetic Layers , 2005 .

[15]  John W. Bandler,et al.  Space mapping technique for electromagnetic optimization , 1994 .

[16]  Sia Nemat-Nasser,et al.  Fabrication and characterization of a negative-refractive-index composite metamaterial , 2004 .

[17]  O. Acher,et al.  Bounds on the dynamic properties of magnetic materials , 2000 .

[18]  K. Seemann,et al.  A new strip line broad-band measurement evaluation for determining the complex permeability of thin ferromagnetic films , 2004 .

[19]  Juan Hinojosa Permittivity characterization from open-end microstrip line measurements , 2007 .

[20]  M. Koledintseva,et al.  Microwave permeability of Co2Z composites , 2005 .

[21]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[22]  S. Safavi-Naeini,et al.  Space mapping-based optimization exploiting tolerant Cauchy approximations , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[23]  S. Tretyakov,et al.  DYNAMIC MODEL OF ARTIFICIAL REACTIVE IMPEDANCE SURFACES , 2003 .

[24]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[25]  T. Sarkar,et al.  Analysis of Multiconductor Transmission Lines , 1988, 31st ARFTG Conference Digest.

[26]  S. H. Chen,et al.  Electromagnetic optimization exploiting aggressive space mapping , 1995 .

[27]  O. Ramahi,et al.  Engineered Magnetic Materials with Improved Dispersion Using Multi-Resonator Structures , 2007, 2007 Canadian Conference on Electrical and Computer Engineering.

[28]  Lixin Ran,et al.  Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. , 2006, Optics express.

[29]  Experimental retrieval of the effective parameters of artificial magnetic materials based on a the microstrip line method , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[30]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[31]  A. Hoorfar,et al.  Numerical study and parameter estimation for double-negative metamaterials with Hilbert-curve inclusions , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[32]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  John W. Bandler,et al.  Neural space-mapping optimization for EM-based design , 2000 .

[34]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[35]  K. Sarabandi,et al.  Electromagnetic metamaterial insulator to eliminate substrate surface waves , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[36]  Y. Rahmat-Samii,et al.  Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications , 2003 .

[37]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[38]  K. Sarabandi,et al.  A method for characterizing complex permittivity and permeability of meta-materials , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[39]  John W. Bandler,et al.  A trust region aggressive space mapping algorithm for EM optimization , 1998, IMS 1998.

[40]  Akira Ishimaru,et al.  Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory , 2003 .

[41]  R. C. Hansen,et al.  Antennas with magneto‐dielectrics , 2000 .

[42]  Bell,et al.  A low-profile Archimedean spiral antenna using an EBG ground plane , 2004, IEEE Antennas and Wireless Propagation Letters.

[43]  N. Engheta,et al.  Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[44]  S. Tretyakov,et al.  Artificial magnetic materials based on the new magnetic particle: Metasolenoid , 2005 .

[45]  V. Crnojevic-Bengin,et al.  Fractal Geometries of Complementary Split-Ring Resonators , 2008, IEEE Transactions on Microwave Theory and Techniques.

[46]  L. Shafai,et al.  Size reduction of a microstrip antenna with dielectric superstrate using meta-materials: artificial magnetic conductors versus magneto-dielectrics , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[47]  Michael A. Saville Investigation of Conformal High-Impedance Ground Planes , 2000 .

[48]  Kyeong-Sik Min,et al.  A design of a meander line antenna using magneto-dielectric material for RFID system , 2005, 2005 Asia-Pacific Microwave Conference Proceedings.

[49]  Richard W. Ziolkowski,et al.  Low frequency lumped element-based negative index metamaterial , 2007 .

[50]  J. Yamauchi,et al.  A spiral antenna backed by a conducting plane reflector , 1986 .

[51]  Yahya Rahmat-Samii,et al.  Patch antennas on externally perforated high dielectric constant substrates , 1999 .

[52]  Experimental investigation of subwavelength resonator based on backward-wave meta-material , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[53]  R. A. Pucel,et al.  Microstrip Propagation on Magnetic Substrates - Part II: Experiment , 1972 .

[54]  Zhan Li,et al.  PBG, PMC and PEC ground planes: a case study of dipole antennas , 2000, IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium. 2000 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (C.

[55]  Ahmad Hoorfar,et al.  Peano high-impedance surfaces , 2004 .

[56]  R. Greegor,et al.  Experimental determination and numerical simulation of the properties of negative index of refraction materials. , 2003, Optics express.

[57]  R. Ziolkowski Design, fabrication, and testing of double negative metamaterials , 2003 .

[59]  T. Lo,et al.  Planar inverted F antenna loaded with high permittivity material , 1995 .

[60]  Nader Engheta,et al.  Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and∕or double-positive metamaterial layers , 2005 .

[61]  R. B. Mack,et al.  The Inverse Problem for Biaxial Materials , 1984 .

[62]  K. Sarabandi,et al.  A substrate for small patch antennas providing tunable miniaturization factors , 2006, IEEE Transactions on Microwave Theory and Techniques.

[63]  John L. Prince,et al.  Dielectric constant and loss tangent measurement using a stripline fixture , 1998, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B.

[64]  O. Ramahi,et al.  Enhanced Bandwidth Artificial Magnetic Ground Plane for Low-Profile Antennas , 2007, IEEE Antennas and Wireless Propagation Letters.

[65]  Richard W. Ziolkowski,et al.  Application of double negative materials to increase the power radiated by electrically small antennas , 2003 .

[66]  Omar M. Ramahi,et al.  Single-negative (SNG) metamaterials for mutual coupling reduction in high-profile antennas , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[67]  Francisco Medina,et al.  Artificial magnetic metamaterial design by using spiral resonators , 2004 .

[68]  Sergei A. Tretyakov,et al.  PIFA loaded with artificial magnetic material: Practical example for two utilization strategies , 2005 .

[69]  H. Kober,et al.  Dictionary of conformal representations , 1957 .

[70]  Omar M. Ramahi,et al.  Mutual coupling reduction in MIMO antennas using artificial magnetic materials , 2009, 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting.

[71]  O. Ramahi,et al.  Evanescent field detection using negative refractive index lenses , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[72]  P. Gelin,et al.  A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity , 1994 .

[73]  S. Tretyakov,et al.  On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas , 2006, IEEE Transactions on Antennas and Propagation.

[74]  K. Sarabandi,et al.  A circularly polarized magneto-dielectric resonator antenna with wideband, multi-resonant response , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[75]  Roland Schinzinger,et al.  Conformal Mapping: Methods and Applications , 1991 .

[76]  Linfeng Chen,et al.  Cavity perturbation technique for the measurement of permittivity tensor of uniaxially anisotropic dielectrics , 1999, IEEE Trans. Instrum. Meas..

[77]  K. Sarabandi,et al.  Magneto-dielectrics in electromagnetics: concept and applications , 2004, IEEE Transactions on Antennas and Propagation.

[78]  David R. Smith,et al.  Homogenization of metamaterials by field averaging (invited paper) , 2006 .

[79]  O. Acher,et al.  Sum rules on the dynamic permeability of hexagonal ferrites , 2002 .

[80]  H. A. Wheeler Transmission-Line Properties of Parallel Strips Separated by a Dielectric Sheet , 1965 .

[81]  Edward A. Parker,et al.  Convoluted array elements and reduced size unit cells for frequency-selective surfaces , 1991 .

[82]  Pekka Ikonen,et al.  Patch antenna with stacked split‐ring resonators as an artificial magneto‐dielectric substrate , 2005 .

[83]  L. Yousefi,et al.  New Artificial Magnetic Materials Based on Fractal Hilbert Curves , 2007, 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications.

[84]  P. Scott Proof in Mathematics: An Introduction [Book Review] , 1998 .

[85]  N. Engheta,et al.  Metamaterial inclusions based on grid‐graph Hamiltonian paths , 2006 .

[86]  O. Ramahi,et al.  Low Profile Wide Band Antennas using Electromagnetic Bandgap Structures with Magneto-Dielectric Materials , 2007, 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications.

[87]  K. Sarabandi,et al.  Design and Modeling of Patch Antenna Printed on Magneto-Dielectric Embedded-Circuit Metasubstrate , 2007, IEEE Transactions on Antennas and Propagation.

[88]  Meng Zhang,et al.  Low profile spiral antenna with PBG substrate , 2000 .

[89]  Omar M Ramahi,et al.  Near-field probes using double and single negative media. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[90]  Mario G. Silveirinha Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters , 2007 .

[91]  J.W. Bandler,et al.  Implicit space mapping optimization exploiting preassigned parameters , 2004, IEEE Transactions on Microwave Theory and Techniques.

[92]  O. Ramahi,et al.  Miniaturized wideband antenna using engineered magnetic materials with multi-resonator inclusions , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[93]  Sergei A. Tretyakov,et al.  Numerical study of a PIFA with dispersive material fillings , 2005 .

[94]  Francisco Medina,et al.  Role of bianisotropy in negative permeability and left-handed metamaterials , 2002 .

[95]  Leila Yousefi,et al.  On the Fundamental Limitations of Artificial Magnetic Materials , 2010, IEEE Transactions on Antennas and Propagation.