Data Approximation Using Biarcs

Abstract. An algorithm for data approximation with biarcs is presented. The method uses a specific formulation of biarcs appropriate for parametric curves in Bézier or NURBS formulation. A base curve is applied to obtain tangents and anchor points for the individual arcs joining in G 1 continuity. Data sampled from circular arcs or straight line segments is represented precisely by one biarc. The method is most useful in numerical control to drive the cutter along straight line or circular paths.

[1]  A. Requicha,et al.  Piecewise-circular curves for geometric modeling , 1987 .

[2]  D. B. Parkinson,et al.  The application of a biarc technique in CNC machining , 1991 .

[3]  Dereck S. Meek,et al.  Approximation of discrete data by G1 arc splines , 1992, Comput. Aided Des..

[4]  Les A. Piegl,et al.  Least-Squares B-Spline Curve Approximation with Arbitary End Derivatives , 2000, Engineering with Computers.

[5]  Josef Hoschek Circular splines , 1992, Comput. Aided Des..

[6]  Shi-Min Hu,et al.  A note on approximation of discrete data by G1 arc splines , 1999, Comput. Aided Des..

[7]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[8]  R. R. Martin,et al.  Differential geometry applied to curve and surface design , 1988 .

[9]  K. M. Bolton Biarc curves , 1975, Comput. Aided Des..

[10]  M. Sabin The use of piecewise forms for the numerical representation of shape , 1976 .

[11]  D. B. Parkinson,et al.  Optimal biarc-curve fitting , 1991, Comput. Aided Des..

[12]  Hiroshi Akima,et al.  A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures , 1970, JACM.

[13]  S. Y. Wong,et al.  An optimization approach for biarc curve-fitting of B-spline curves , 1996, Comput. Aided Des..

[14]  Jens Schönherr,et al.  Smooth biarc curves , 1993, Comput. Aided Des..

[15]  Les A. Piegl,et al.  Curve fitting algorithm for rough cutting , 1986 .

[16]  Barry Joe,et al.  Robust computation of the rotation minimizing frame for sweep surface modeling , 1997, Comput. Aided Des..

[17]  P. Bézier Numerical control : mathematics and applications , 1972 .

[18]  Dereck S. Meek,et al.  Approximating quadratic NURBS curves by arc splines , 1993, Comput. Aided Des..

[19]  Gábor Renner,et al.  Method of shape description for mechanical engineering practice , 1982 .