Nonlinear model predictive control with moving horizon state and disturbance estimation - Application to the normalization of blood glucose in the critically ill

Abstract In this paper we present a nonlinear model predictive control (NMPC) strategy that can be used to tackle nonlinear control problems with changing model parameters, unknown disturbance factors and specifications on the rates of change of the inputs. The closed-loop performance of the proposed NMPC strategy is demonstrated by applying it to the problem of blood glucose normalization in critically ill patients. A nonlinear patient model, that is particularly developed for describing the glucose and the insulin dynamics of these patients, is used for online state and disturbance estimation and control under a realistic disturbance realization. The results are satisfactory both in terms of control behavior (set point tracking and the suppression of unknown disturbance factors) and clinical acceptability.

[1]  R. Fletcher Practical Methods of Optimization , 1988 .

[2]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[3]  Niels Haverbeke,et al.  Glycemia Prediction in Critically Ill Patients Using an Adaptive Modeling Approach , 2007, Journal of diabetes science and technology.

[4]  Riccardo Scattolini,et al.  Stabilizing model predictive control of nonlinear continuous time systems , 2003, Annu. Rev. Control..

[5]  Miet Schetz,et al.  Outcome benefit of intensive insulin therapy in the critically ill: Insulin dose versus glycemic control* , 2003, Critical care medicine.

[6]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[7]  Bert Pluymers,et al.  The application of Model Predictive Control to normalize glycemia of critically ill patients , 2007, 2007 European Control Conference (ECC).

[8]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[9]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[10]  M Schetz,et al.  Intensive insulin therapy in critically ill patients. , 2001, The New England journal of medicine.

[11]  J. Rawlings,et al.  Nonlinear Moving Horizon State Estimation , 1995 .

[12]  Riccardo Scattolini,et al.  Stabilizing Model Predictive Control of Nonlinear Continuous Time Systems , 2003 .

[13]  Liu Xinbing,et al.  Intensive insulin therapy for the critically ill patients with stress hyperglycemia , 2008 .

[14]  C. V. Rao,et al.  Steady states and constraints in model predictive control , 1999 .

[15]  James B. Rawlings,et al.  Critical Evaluation of Extended Kalman Filtering and Moving-Horizon Estimation , 2005 .

[16]  B De Moor,et al.  An adaptive input–output modeling approach for predicting the glycemia of critically ill patients , 2006, Physiological measurement.

[17]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[18]  G. Nicolao,et al.  Stability and Robustness of Nonlinear Receding Horizon Control , 2000 .

[19]  Scott K Aberegg,et al.  Intensive insulin therapy in the medical ICU. , 2006, The New England journal of medicine.

[20]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[21]  R. Bergman,et al.  Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. , 1981, The Journal of clinical investigation.

[22]  Johannes P. Schlöder,et al.  Schnelle Algorithmen für die Zustands- und Parameterschätzung auf bewegten Horizonten (Fast Algorithms for State and Parameter Estimation on Moving Horizons) , 2006, Autom..