Advances in the Production of High-Value Products by Microalgae

Abstract Microalgae are considered a promising source for various high-value products, including carotenoids and omega-3 and omega-6 polyunsaturated fatty acids (PUFAs). Excluding production by heterotrophic fermentation, only two microalgal high-value products are successfully marketed at a relevant scale: β-carotene from Dunaliella salina, and astaxanthin from Haematococcus pluvialis. In addition, Chlorella and Spirulina biomass are marketed in large volumes as nutraceuticals, and phycocyanin extracted from cyanobacteria has gained major market share recently. Additional algal strains of industrial potential have been described for the production of high-value products, such as carotenoids and PUFAs, or for biofuels production, and novel promising strains continue to be reported. However, phototrophic production of algal products is considered 2–5 times more expensive than competing pathways for both high-value products and bulk biomass. Recent—and often still unpublished—advances have been made in deci...

[1]  J. Harwood,et al.  Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content , 2008, Journal of experimental botany.

[2]  H. B. Li,et al.  Preparative isolation and purification of astaxanthin from the microalga Chlorococcum sp. by high-speed counter-current chromatography. , 2001, Journal of chromatography. A.

[3]  Sarah R. Smith,et al.  Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth , 2013, Proceedings of the National Academy of Sciences.

[4]  Q. Hu,et al.  Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production , 2013, Applied Microbiology and Biotechnology.

[5]  J. Ohlrogge,et al.  DGAT1 and PDAT1 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol Biosynthesis and Are Essential for Normal Pollen and Seed Development[W][OA] , 2009, The Plant Cell Online.

[6]  J. Xu,et al.  A membrane-bound glycerol-3-phosphate acyltransferase from Thalassiosira pseudonana regulates acyl composition of glycerolipidsThis paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada – Plant Biotechnology Institute. , 2009 .

[7]  Rebecca L. Roston,et al.  Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779 , 2012, PLoS genetics.

[8]  Lutz Wobbe,et al.  Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. , 2009, Journal of biotechnology.

[9]  A. Katz,et al.  Characterization of major lipid droplet proteins from Dunaliella , 2012, Planta.

[10]  J. Steinbrenner,et al.  Transformation of the Green Alga Haematococcus pluvialis with a Phytoene Desaturase for Accelerated Astaxanthin Biosynthesis , 2006, Applied and Environmental Microbiology.

[11]  Jean-Michel Claverie,et al.  The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W] , 2010, Plant Cell.

[12]  J. Bertram,et al.  Bioactive carotenoids: potent antioxidants and regulators of gene expression , 2004, Redox report : communications in free radical research.

[13]  S. Arad,et al.  Red microalgal cell-wall polysaccharides: biotechnological aspects. , 2010, Current opinion in biotechnology.

[14]  W. Oswald,et al.  Biological transformation of solar energy. , 1960, Advances in applied microbiology.

[15]  R. Wijffels,et al.  An Outlook on Microalgal Biofuels , 2010, Science.

[16]  T. Tonon,et al.  Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. , 2002, Phytochemistry.

[17]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[18]  A. Ben‐Amotz,et al.  Bioavailability of a natural isomer mixture compared with synthetic all-trans beta-carotene in human serum. , 1996, The American journal of clinical nutrition.

[19]  A. Solovchenko,et al.  Growth, lipid production and metabolic adjustments in the euryhaline eustigmatophyte Nannochloropsis oceanica CCALA 804 in response to osmotic downshift , 2013, Applied Microbiology and Biotechnology.

[20]  M. Eppink,et al.  Microalgae for the production of bulk chemicals and biofuels , 2010 .

[21]  B. De Baets,et al.  Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Boussiba Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response , 2000 .

[23]  Randor Radakovits,et al.  Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana , 2012, Nature Communications.

[24]  M. J. Terry,et al.  Improving photosynthesis for algal biofuels: toward a green revolution. , 2011, Trends in biotechnology.

[25]  C. J. Shepherd,et al.  Global fishmeal and fish-oil supply: inputs, outputs and markets. , 2013, Journal of fish biology.

[26]  Feng Chen,et al.  Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. , 2012, Bioresource technology.

[27]  J. Shockey,et al.  Tung Tree DGAT1 and DGAT2 Have Nonredundant Functions in Triacylglycerol Biosynthesis and Are Localized to Different Subdomains of the Endoplasmic Reticulum[W] , 2006, The Plant Cell Online.

[28]  Hansgeorg Ernst,et al.  Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of β‐carotene in antioxidant functions , 2001 .

[29]  J. Qin,et al.  NUCLEAR MONOPLOIDY AND ASEXUAL PROPAGATION OF NANNOCHLOROPSIS OCEANICA (EUSTIGMATOPHYCEAE) AS REVEALED BY ITS GENOME SEQUENCE 1 , 2011, Journal of phycology.

[30]  D. Stengel,et al.  LC-PUFA-Enriched Oil Production by Microalgae: Accumulation of Lipid and Triacylglycerols Containing n-3 LC-PUFA Is Triggered by Nitrogen Limitation and Inorganic Carbon Availability in the Marine Haptophyte Pavlova lutheri , 2013, Marine drugs.

[31]  T. Tonon,et al.  Fatty acid desaturases from the microalga Thalassiosira pseudonana , 2005, The FEBS journal.

[32]  Christoph Griesbeck,et al.  Chlamydomonas reinhardtii , 2006, Molecular biotechnology.

[33]  M. Seibert,et al.  Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga , 2011, PloS one.

[34]  Kyle Botsch,et al.  Production of recombinant enzymes in the marine alga Dunaliella tertiolecta , 2013 .

[35]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[36]  F. G. Acién,et al.  Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. , 2008, Journal of agricultural and food chemistry.

[37]  S. Briggs,et al.  Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide , 2012, PloS one.

[38]  Q. Hu,et al.  Phospholipid:Diacylglycerol Acyltransferase Is a Multifunctional Enzyme Involved in Membrane Lipid Turnover and Degradation While Synthesizing Triacylglycerol in the Unicellular Green Microalga Chlamydomonas reinhardtii[C][W] , 2012, Plant Cell.

[39]  N. Tuteja,et al.  Recent advances in development of marker-free transgenic plants: Regulation and biosafety concern , 2012, Journal of Biosciences.

[40]  L. Ulmann,et al.  The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats , 2012, Lipids in Health and Disease.

[41]  A. Zarka,et al.  Cloning and molecular characterization of a novel acyl‐CoA:diacylglycerol acyltransferase 1‐like gene (PtDGAT1) from the diatom Phaeodactylum tricornutum , 2011, The FEBS journal.

[42]  H. Moreau,et al.  In vivo characterization of the first acyl-CoA Delta6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. , 2005, The Biochemical journal.

[43]  A. Millar,et al.  Genomic Transformation of the Picoeukaryote Ostreococcus tauri , 2012, Journal of visualized experiments : JoVE.

[44]  J. Ohlrogge,et al.  Biochemical pathways in seed oil synthesis. , 2013, Current opinion in plant biology.

[45]  S. Mayfield,et al.  Exploiting diversity and synthetic biology for the production of algal biofuels , 2012, Nature.

[46]  B. Henrissat,et al.  Genome of the red alga Porphyridium purpureum , 2013, Nature Communications.

[47]  R T Lorenz,et al.  Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. , 2000, Trends in biotechnology.

[48]  Ovidiu Ruecker,et al.  Strategies to facilitate transgene expression in Chlamydomonas reinhardtii , 2009, Planta.

[49]  A. Nag,et al.  Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation. , 2013, Journal of proteomics.

[50]  D. Harats,et al.  Prevention of Atherosclerosis Progression by 9-cis-β-Carotene Rich Alga Dunaliella in apoE-Deficient Mice , 2013, BioMed research international.

[51]  A. Zarka,et al.  Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. , 2012, Applied Microbiology and Biotechnology.

[52]  Miguel Olaizola,et al.  Haematococcus astaxanthin: applications for human health and nutrition. , 2003, Trends in biotechnology.

[53]  J. Napier,et al.  Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants , 2004, Nature Biotechnology.

[54]  J. Ohlrogge,et al.  Compartmentation of Triacylglycerol Accumulation in Plants* , 2011, The Journal of Biological Chemistry.

[55]  Radhouan Ben-Hamadou,et al.  Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae , 2013, Marine drugs.

[56]  J. D. del Campo,et al.  Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta) , 2004, Applied Microbiology and Biotechnology.

[57]  Z. Cohen,et al.  Microalgae as a Source of ω3 Fatty Acids1 , 1995 .

[58]  Jo-Shu Chang,et al.  Establishment of an efficient genetic transformation system in Scenedesmus obliquus. , 2013, Journal of biotechnology.

[59]  Gassan Hodaifa,et al.  Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. , 2008, Bioresource technology.

[60]  Duu-Jong Lee,et al.  Microalgae-based biorefinery--from biofuels to natural products. , 2013, Bioresource technology.

[61]  H. Ernst,et al.  The chemistry of novel xanthophyll carotenoids. , 2008, The American journal of cardiology.

[62]  L. Rodolfi,et al.  Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor , 2009, Biotechnology and bioengineering.

[63]  G. Sandmann,et al.  One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin , 2010, Planta.

[64]  P. Champéroux,et al.  Dietary long-chain omega-3 fatty acids of marine origin: a comparison of their protective effects on coronary heart disease and breast cancers. , 2006, Progress in biophysics and molecular biology.

[65]  O. Pulz,et al.  Valuable products from biotechnology of microalgae , 2004, Applied Microbiology and Biotechnology.

[66]  Hervé Moreau,et al.  Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesiss⃞s⃞ The online version of this article (available at http://www.jlr.org) contains an additional figure. Published, JLR Papers in Press, August 1, 2004. DOI 10.1194/jlr.M400181-JLR200 , 2004, Journal of Lipid Research.

[67]  C. Benning,et al.  Lipid metabolism in microalgae distinguishes itself. , 2013, Current opinion in biotechnology.

[68]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[69]  I. Khozin-Goldberg,et al.  Selection of a DGLA-producing mutant of the microalga Parietochloris incisa: I. Identification of mutation site and expression of VLC-PUFA biosynthesis genes , 2011, Applied Microbiology and Biotechnology.

[70]  J. Gimpel,et al.  CHLOROPLAST GENETIC TOOL FOR THE GREEN MICROALGAE HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES) 1 , 2012, Journal of phycology.

[71]  R. Ofir,et al.  Cloning and Characterization of the ∆6 Polyunsaturated Fatty Acid Elongase from the Green Microalga Parietochloris incisa , 2009, Lipids.

[72]  A. Falciatore,et al.  Gene silencing in the marine diatom Phaeodactylum tricornutum , 2009, Nucleic acids research.

[73]  J. Harwood,et al.  The versatility of algae and their lipid metabolism. , 2009, Biochimie.

[74]  Jean-Paul Cadoret,et al.  Microalgae, Functional Genomics and Biotechnology , 2012 .

[75]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[76]  E. Heinz,et al.  Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. , 2002, European journal of biochemistry.

[77]  J. Ohlrogge,et al.  Metabolic engineering of fatty acid biosynthesis in plants. , 2002, Metabolic engineering.

[78]  Jordan Peccia,et al.  Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation , 2012, Biotechnology for Biofuels.

[79]  Xin-Guang Zhu,et al.  Improving photosynthetic efficiency for greater yield. , 2010, Annual review of plant biology.

[80]  Rene H Wijffels,et al.  Biorefinery of microalgae for food and fuel. , 2013, Bioresource technology.

[81]  I. Gill,et al.  Polyunsaturated fatty acids, Part 1: Occurrence, biological activities and applications. , 1997, Trends in biotechnology.

[82]  A. Richmond,et al.  Outdoor cultivation of the marine microalga Isochrysis galbana in open reactors , 1988 .

[83]  F. G. Acién,et al.  Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature , 2008, Applied Microbiology and Biotechnology.

[84]  M. Borowitzka High-value products from microalgae—their development and commercialisation , 2013, Journal of Applied Phycology.

[85]  A. Zarka,et al.  Isolation of a Novel Oil Globule Protein from the Green Alga Haematococcus pluvialis (Chlorophyceae) , 2011, Lipids.

[86]  A. Richmond,et al.  Lipid and biomass production by the halotolerant microalga Nannochloropsis salina , 1987 .

[87]  C. Howe,et al.  Biodiesel from algae: challenges and prospects. , 2010, Current opinion in biotechnology.

[88]  Xuebo Liu,et al.  Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. , 2007, Biochemical and biophysical research communications.

[89]  A. Zarka,et al.  LIGHT‐INDUCED OIL GLOBULE MIGRATION IN HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) , 2012, Journal of phycology.

[90]  S. Purton,et al.  ALGAL TRANSGENICS IN THE GENOMIC ERA 1 , 2005 .

[91]  Bodi Hui,et al.  Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis , 2003, Biotechnology Letters.

[92]  Nicole Poulsen,et al.  MOLECULAR GENETIC MANIPULATION OF THE DIATOM THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) 1 , 2006 .

[93]  R. Léon,et al.  Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis , 2011, Applied Microbiology and Biotechnology.

[94]  Hector Quemada,et al.  Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation , 2013 .

[95]  E. Fernández,et al.  Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. , 2007, Journal of biotechnology.

[96]  Yin Li,et al.  Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis , 2011, Journal of experimental botany.

[97]  L. Ulmann,et al.  Effect of UV stress on the fatty acid and lipid class composition in two marine microalgae Pavlova lutheri (Pavlovophyceae) and Odontella aurita (Bacillariophyceae) , 2010, Journal of Applied Phycology.

[98]  Rabbani,et al.  Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga dunaliella bardawil , 1998, Plant physiology.

[99]  Qing Liu,et al.  Isolation and Characterisation of a High-Efficiency Desaturase and Elongases from Microalgae for Transgenic LC-PUFA Production , 2010, Marine Biotechnology.

[100]  S. Boussiba,et al.  Short-term dietary supplementation with the microalga Parietochloris incisa enhances stress resistance in guppies Poecilia reticulata , 2010 .

[101]  G. Sandmann,et al.  Metabolic engineering of tomato for high-yield production of astaxanthin. , 2013, Metabolic engineering.

[102]  M. Karpasas,et al.  Superior biolubricant from a species of red microalga. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[103]  José G García-Cerdán,et al.  Truncated Photosystem Chlorophyll Antenna Size in the Green Microalga Chlamydomonas reinhardtii upon Deletion of the TLA3-CpSRP43 Gene1[C][W][OA] , 2012, Plant Physiology.

[104]  A. Vonshak,et al.  Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. , 2002, Phytochemistry.

[105]  G. C. Zittelli,et al.  Pavlova lutheri: Production, preservation and use as food for Crassostrea gigas larvae , 2008 .

[106]  I. Feussner,et al.  Metabolic Engineering of ω3-Very Long Chain Polyunsaturated Fatty Acid Production by an Exclusively Acyl-CoA-dependent Pathway* , 2008, Journal of Biological Chemistry.

[107]  Todd W. Lane,et al.  Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation , 2009, Journal of Applied Phycology.

[108]  C. Benning,et al.  RNA Interference Silencing of a Major Lipid Droplet Protein Affects Lipid Droplet Size in Chlamydomonas reinhardtii , 2009, Eukaryotic Cell.

[109]  Ami Ben-Amotz,et al.  New mode of Dunaliella biotechnology: two-phase growth for β-carotene production , 1995, Journal of Applied Phycology.

[110]  Robert V Farese,et al.  Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. , 2013, Developmental cell.

[111]  U. Maier,et al.  Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum , 2011, PloS one.

[112]  Hernán Alonso,et al.  Advancing Our Understanding and Capacity to Engineer Nature’s CO2-Sequestering Enzyme, Rubisco1[W] , 2010, Plant Physiology.

[113]  Hansol Lee,et al.  Concurrent extraction and reaction for the production of biodiesel from wet microalgae. , 2014, Bioresource technology.

[114]  Michal Shapira,et al.  Stable Chloroplast Transformation of the Unicellular Red AlgaPorphyridium Species1 , 2002, Plant Physiology.

[115]  J. Froehlich,et al.  A Heteromeric Plastidic Pyruvate Kinase Complex Involved in Seed Oil Biosynthesis in Arabidopsis[W] , 2007, The Plant Cell Online.

[116]  R. Carlson,et al.  Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum , 2012, Biotechnology for Biofuels.

[117]  P. Shrestha,et al.  Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. , 2005, Biochimica et biophysica acta.

[118]  I. Khozin-Goldberg,et al.  Feeding with arachidonic acid-rich triacylglycerols from the microalga Parietochloris incisa improved recovery of guppies from infection with Tetrahymena sp. , 2006 .

[119]  J. Napier,et al.  Reconstitution of EPA and DHA biosynthesis in Arabidopsis: Iterative metabolic engineering for the synthesis of n−3 LC-PUFAs in transgenic plants , 2013, Metabolic engineering.

[120]  C. Benning,et al.  A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins1[W][OA] , 2012, Plant Physiology.

[121]  M. Eliáš,et al.  ZOOSPOROGENESIS, MORPHOLOGY, ULTRASTRUCTURE, PIGMENT COMPOSITION, AND PHYLOGENETIC POSITION OF TRACHYDISCUS MINUTUS (EUSTIGMATOPHYCEAE, HETEROKONTOPHYTA) 1 , 2012, Journal of phycology.

[122]  Yu-Jin Jung,et al.  A Potential Commercial Source of Fucoxanthin Extracted from the Microalga Phaeodactylum tricornutum , 2012, Applied Biochemistry and Biotechnology.

[123]  Milton Sommerfeld,et al.  Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii , 2010, Biotechnology and bioengineering.

[124]  A. Grossman,et al.  Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinhardtii1[w] , 2005, Plant Physiology.

[125]  Xuebo Liu,et al.  Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism , 2009, Brain Research.

[126]  P. Přibyl,et al.  Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid , 2010, Folia Microbiologica.

[127]  J. Napier,et al.  Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids☆ , 2014, Metabolic engineering.

[128]  M. Kazachkov,et al.  Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid β‐oxidation intermediates into triacylglycerol , 2013, The FEBS journal.