Simultaneous G-Quadruplex DNA Logic.

A fundamental principle of digital computer operation is Boolean logic, where inputs and outputs are described by binary integer voltages. Similarly, inputs and outputs may be processed on the molecular level as exemplified by synthetic circuits that exploit the programmability of DNA base-pairing. Unlike modern computers, which execute large numbers of logic gates in parallel, most implementations of molecular logic have been limited to single computing tasks, or sensing applications. This work reports three G-quadruplex-based logic gates that operate simultaneously in a single reaction vessel. The gates respond to unique Boolean DNA inputs by undergoing topological conversion from duplex to G-quadruplex states that were resolved using a thioflavin T dye and gel electrophoresis. The modular, addressable, and label-free approach could be incorporated into DNA-based sensors, or used for resolving and debugging parallel processes in DNA computing applications.

[1]  Nicolas H Voelcker,et al.  Sequence-addressable DNA logic. , 2008, Small.

[2]  H. Sleiman,et al.  Synergy of Two Assembly Languages in DNA Nanostructures: Self-Assembly of Sequence-Defined Polymers on DNA Cages. , 2016, Journal of the American Chemical Society.

[3]  Ehud Shapiro,et al.  DNA molecule provides a computing machine with both data and fuel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Reif,et al.  Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Jehoshua Bruck,et al.  Neural network computation with DNA strand displacement cascades , 2011, Nature.

[6]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[7]  S. Balasubramanian,et al.  DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential , 2017, Nature Reviews Molecular Cell Biology.

[8]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[9]  Yulia V Gerasimova,et al.  Alphanumerical Visual Display Made of DNA Logic Gates for Drug Susceptibility Testing of Pathogens , 2018, Chembiochem : a European journal of chemical biology.

[10]  G. Seelig,et al.  DNA as a universal substrate for chemical kinetics , 2010, Proceedings of the National Academy of Sciences.

[11]  Jiming Hu,et al.  Logic gates based on G-quadruplexes: principles and sensor applications , 2015, Microchimica Acta.

[12]  Renjun Pei,et al.  DNA Triplexes-Guided Assembly of G-Quadruplexes for Constructing Label-free Fluorescent Logic Gates. , 2016, Chemistry, an Asian journal.

[13]  Jean-Louis Mergny,et al.  DNA duplex–quadruplex exchange as the basis for a nanomolecular machine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Southern Detection of specific sequences among DNA fragments separated by gel electrophoresis. , 1975, Journal of molecular biology.

[15]  Itamar Willner,et al.  Switchable reconfiguration of nucleic acid nanostructures by stimuli-responsive DNA machines. , 2014, Accounts of chemical research.

[16]  Darko Stefanovic,et al.  Deoxyribozyme-based logic gates. , 2002, Journal of the American Chemical Society.

[17]  I. Willner,et al.  Switchable reconfiguration of an interlocked DNA olympiadane nanostructure. , 2014, Angewandte Chemie.

[18]  Jonathan Bath,et al.  Reversible logic circuits made of DNA. , 2011, Journal of the American Chemical Society.

[19]  Lulu Qian,et al.  Supporting Online Material Materials and Methods Figs. S1 to S6 Tables S1 to S4 References and Notes Scaling up Digital Circuit Computation with Dna Strand Displacement Cascades , 2022 .

[20]  P. Bolton,et al.  Fluorescent dyes specific for quadruplex DNA. , 1998, Nucleic acids research.

[21]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[22]  Ru-Ru Gao,et al.  Integration of G-quadruplex and DNA-templated Ag NCs for nonarithmetic information processing , 2017, Chemical science.

[23]  Achikanath C Bhasikuttan,et al.  Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. , 2015, Chemical communications.

[24]  Tao Li,et al.  Enzyme‐Free Unlabeled DNA Logic Circuits Based on Toehold‐Mediated Strand Displacement and Split G‐Quadruplex Enhanced Fluorescence , 2013, Advanced materials.

[25]  R. Pei,et al.  Label-free DNA-based biosensors using structure-selective light-up dyes. , 2016, The Analyst.

[26]  Michael Famulok,et al.  Input-Dependent Induction of Oligonucleotide Structural Motifs for Performing Molecular Logic , 2012, Journal of the American Chemical Society.

[27]  Mette D. E. Jepsen,et al.  Construction of a fuzzy and Boolean logic gates based on DNA. , 2015, Small.

[28]  Modi Wang,et al.  Recent Developments in G-Quadruplex Probes. , 2015, Chemistry & biology.

[29]  Michael Famulok,et al.  Interlocked DNA nanostructures controlled by a reversible logic circuit , 2014, Nature Communications.

[30]  Jean-Louis Mergny,et al.  Combination of i-motif and G-quadruplex structures within the same strand: formation and application. , 2013, Angewandte Chemie.

[31]  G. Seelig,et al.  Enzyme-Free Nucleic Acid Logic Circuits , 2022 .

[32]  Luca Cardelli,et al.  Programmable chemical controllers made from DNA. , 2013, Nature nanotechnology.

[33]  N. Sugimoto,et al.  DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. , 2006, Angewandte Chemie.

[34]  Shaojun Dong,et al.  Cascade DNA logic device programmed ratiometric DNA analysis and logic devices based on a fluorescent dual-signal probe of a G-quadruplex DNAzyme. , 2016, Chemical communications.

[35]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[36]  Feng Li,et al.  Versatile and Programmable DNA Logic Gates on Universal and Label-Free Homogeneous Electrochemical Platform. , 2016, Analytical chemistry.

[37]  Zehavit Dadon,et al.  Der Weg zu nichtenzymatischen molekularen Netzwerken , 2008 .

[38]  J. Reif,et al.  Logical computation using algorithmic self-assembly of DNA triple-crossover molecules , 2000, Nature.

[39]  Hadi Ravan,et al.  DNA Domino-Based Nanoscale Logic Circuit: A Versatile Strategy for Ultrasensitive Multiplexed Analysis of Nucleic Acids. , 2017, Analytical chemistry.

[40]  Itamar Willner,et al.  All-DNA finite-state automata with finite memory , 2010, Proceedings of the National Academy of Sciences.

[41]  Brian M. Frezza,et al.  Modular multi-level circuits from immobilized DNA-based logic gates. , 2007, Journal of the American Chemical Society.

[42]  Dik-Lung Ma,et al.  Utilization of G-Quadruplex-Forming Aptamers for the Construction of Luminescence Sensing Platforms. , 2017, ChemPlusChem.

[43]  Michael Conrad,et al.  Molecular computing as a link between biological and physical theory , 1982 .

[44]  E. Winfree Algorithmic Self-Assembly of DNA: Theoretical Motivations and 2D Assembly Experiments , 2000, Journal of biomolecular structure & dynamics.

[45]  Friedrich C. Simmel,et al.  Nukleinsäure‐basierte molekulare Werkzeuge , 2011 .

[46]  H. Sleiman,et al.  Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space. , 2014, Journal of the American Chemical Society.

[47]  Michael Conrad,et al.  On design principles for a molecular computer , 1985, CACM.

[48]  Zehavit Dadon,et al.  The road to non-enzymatic molecular networks. , 2008, Angewandte Chemie.

[49]  Darko Stefanovic,et al.  A deoxyribozyme-based molecular automaton , 2003, Nature Biotechnology.

[50]  Jiming Hu,et al.  Multiple types of logic gates based on a single G-quadruplex DNA strand , 2014, Scientific Reports.

[51]  E. Winfree,et al.  Algorithmic Self-Assembly of DNA Sierpinski Triangles , 2004, PLoS biology.

[52]  Jean-Louis Mergny,et al.  Thioflavin T as a fluorescence light-up probe for G4 formation , 2014, Nucleic acids research.

[53]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[54]  R. Gwilliam,et al.  Sequence of Plasmodium falciparum chromosomes 1, 3–9 and 13 , 2002, Nature.

[55]  Françoise Remacle,et al.  Logic reversibility and thermodynamic irreversibility demonstrated by DNAzyme-based Toffoli and Fredkin logic gates , 2012, Proceedings of the National Academy of Sciences.

[56]  A. Lane,et al.  Stability and kinetics of G-quadruplex structures , 2008, Nucleic acids research.

[57]  D. Chan,et al.  G-quadruplexes for luminescent sensing and logic gates , 2013, Nucleic acids research.

[58]  Yahui Guo,et al.  Label-free logic modules and two-layer cascade based on stem-loop probes containing a G-quadruplex domain. , 2014, Chemistry, an Asian journal.

[59]  Julián Valero,et al.  Logic gating by macrocycle displacement using a double-stranded DNA [3]rotaxane shuttle. , 2014, Angewandte Chemie.

[60]  Almogit Abu-Horowitz,et al.  Universal computing by DNA origami robots in a living animal , 2014, Nature nanotechnology.