A MODEL HIERARCHY FOR IONOSPHERIC PLASMA MODELING

This paper deals with the modeling of the ionospheric plasma. Starting from the two-fluid Euler–Maxwell equations, we present two hierarchies of models. The MHD hierarchy deals with large plasma density situations while the dynamo hierarchy is adapted to lower density situations. Most of the models encompassed by the dynamo hierarchy are classical ones, but we shall give a unified presentation of them which brings a new insight into their interrelations. By contrast, the MHD hierarchy involves a new (at least to the authors) model, the massless-MHD model. This is a diffusion system for the density and magnetic field which could be of great practical interest. Both hierarchies terminate with the "classical" Striation model, which we shall investigate in detail.

[1]  W. Baker Electric currents in the ionosphere - The atmospheric dynamo , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  S. Chapman The electrical conductivity of the ionosphere: A review , 1956 .

[3]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[4]  A. Simon Instability of a Partially Ionized Plasma in Crossed Electric and Magnetic Fields , 1963 .

[5]  Henry Rishbeth,et al.  Introduction to ionospheric physics , 1969 .

[6]  L. Linson,et al.  Formation of striations in ionospheric plasma clouds , 1970 .

[7]  D. T. Farley,et al.  GENERATION OF SMALL-SCALE IRREGULARITIES IN THE EQUATORIAL ELECTROJET. , 1973 .

[8]  F. W. Perkins,et al.  Deformation and striation of plasma clouds in the ionosphere: 1 , 1973 .

[9]  N. A. Krall,et al.  Principles of Plasma Physics , 1973 .

[10]  F. W. Perkins,et al.  Deformation and striation of plasma clouds in the ionosphere: 2. Numerical simulation of a nonlinear two‐dimensional model , 1973 .

[11]  F. W. Perkins,et al.  Deformation and striation of plasma clouds in the ionosphere, 3. Numerical simulations of a multilevel model with recombination chemistry , 1976 .

[12]  Sidney L. Ossakow,et al.  Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity , 1982 .

[13]  Donald T. Farley,et al.  Theory of equatorial electrojet plasma waves: new developments and current status , 1985 .

[14]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[15]  R. Sudan,et al.  A nonlocal linear theory of the gradient drift instability in the equatorial electrojet , 1989 .

[16]  C. Ronchi,et al.  Effect of short‐scale turbulence on kilometer wavelength irregularities in the equatorial electrojet , 1990 .

[17]  G. Parks,et al.  Physics Of Space Plasmas: An Introduction , 1991 .

[18]  Corrado Ronchi,et al.  Numerical simulations of large‐scale plasma turbulence in the daytime equatorial electrojet , 1991 .

[19]  Christophe Grimault Caracterisation des canaux de propagation satellite-terre shf et ehf en presence de plasma post-nucleaire , 1995 .

[20]  Elisabeth Blanc,et al.  Kilometric irregularities in the E and F regions of the daytime equatorial ionosphere observed by a high resolution HF radar , 1996 .

[21]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[22]  A Roe Scheme for Ideal MHD Equations on 2D Adaptively Refined Triangular Grids , 1999 .

[23]  E. Grenier,et al.  Quasineutral limit of an euler-poisson system arising from plasma physics , 2000 .

[24]  K. Powell,et al.  Magnetospheric configuration for Parker-spiral IMF conditions: Results of a 3D AMR MHD simulation , 2000 .

[25]  Marshall Slemrod,et al.  Quasi-Neutral Limit for Euler-Poisson System , 2001, J. Nonlinear Sci..

[26]  G. Gallice,et al.  Striations dans l'ionosphère phénoménologie et simulation numérique , 2002 .

[27]  Ling Hsiao,et al.  Quasi-neutral Limit of a Nonlinear Drift Diffusion Model for Semiconductors , 2002 .

[28]  Wang Shu,et al.  Quasineutral Limit of a Nonlinear Drift Diffusion Model for Semiconductors: The Fast Diffusion Case , 2003 .