Cyanobacterial membrane biology under environmental stresses with particular reference to photosynthesis and photomorphogenesis

[1]  L. Rai,et al.  Dehydration and rehydration - induced temporal changes in cytosolic and membrane proteome of the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120 , 2017 .

[2]  L. Rai,et al.  Impact of UV‐B Exposure on Phytochrome and Photosynthetic Machinery , 2017 .

[3]  B. Montgomery Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria. , 2016, Journal of experimental botany.

[4]  C. Robinson,et al.  Protein translocation and thylakoid biogenesis in cyanobacteria. , 2016, Biochimica et biophysica acta.

[5]  Ravendran Vasudevan,et al.  Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. , 2016, Biochimica et biophysica acta.

[6]  L. Rai,et al.  Exploring the membrane proteome of the diazotropic cyanobacterium Anabaena PCC7120 through gel-based proteomics and in silico approaches. , 2015, Journal of proteomics.

[7]  L. Rai,et al.  UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species. , 2015, Journal of proteomics.

[8]  J. Nickelsen,et al.  Biogenesis of thylakoid membranes. , 2015, Biochimica et biophysica acta.

[9]  M. Bonn,et al.  IM30 triggers membrane fusion in cyanobacteria and chloroplasts , 2015, Nature Communications.

[10]  F. Pinto,et al.  HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120. , 2015, Environmental microbiology.

[11]  B. Montgomery,et al.  Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response , 2015, Redox biology.

[12]  B. Montgomery,et al.  Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon. , 2014, Microbiology.

[13]  D. Bryant,et al.  Vipp1 Is Essential for the Biogenesis of Photosystem I but Not Thylakoid Membranes in Synechococcus sp. PCC 7002* , 2014, The Journal of Biological Chemistry.

[14]  S. Mayfield,et al.  Engineered Photosystem II reaction centers optimize photochemistry versus photoprotection at different solar intensities. , 2014, Journal of the American Chemical Society.

[15]  L. Rai,et al.  Comparative proteomics unveils cross species variations in Anabaena under salt stress. , 2014, Journal of proteomics.

[16]  D. Call,et al.  Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat , 2014, Front. Microbiol..

[17]  M. Schroda,et al.  A role of VIPP1 as a dynamic structure within thylakoid centers as sites of photosystem biogenesis? , 2013, Plant signaling & behavior.

[18]  L. Rai,et al.  Salt and UV-B induced changes in Anabaena PCC 7120: physiological, proteomic and bioinformatic perspectives , 2013, Photosynthesis Research.

[19]  B. Montgomery,et al.  Light intensity and reactive oxygen species are centrally involved in photoregulatory responses during complementary chromatic adaptation in Fremyella diplosiphon , 2013 .

[20]  M. Ashraf,et al.  Photosynthesis under stressful environments: An overview , 2013, Photosynthetica.

[21]  A. Latała,et al.  Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium , 2013, Photosynthetica.

[22]  M. Ekman,et al.  A Nostoc punctiforme Sugar Transporter Necessary to Establish a Cyanobacterium-Plant Symbiosis1[C][W] , 2013, Plant Physiology.

[23]  S. Golden,et al.  Natural Variants of Photosystem II Subunit D1 Tune Photochemical Fitness to Solar Intensity* , 2012, The Journal of Biological Chemistry.

[24]  H. Katoh Desiccation-inducible genes are related to N(2)-fixing system under desiccation in a terrestrial cyanobacterium. , 2012, Biochimica et biophysica acta.

[25]  B. Montgomery,et al.  Light Quantity Affects the Regulation of Cell Shape in Fremyella diplosiphon , 2012, Front. Microbio..

[26]  J. Nickelsen,et al.  Initial Steps of Photosystem II de Novo Assembly and Preloading with Manganese Take Place in Biogenesis Centers in Synechocystis[C][W] , 2012, Plant Cell.

[27]  U. Vothknecht,et al.  Vipp1: a very important protein in plastids?! , 2012, Journal of experimental botany.

[28]  Christopher J. Howe,et al.  Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system† , 2011 .

[29]  S. Cheevadhanarak,et al.  Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components , 2011, Proteome Science.

[30]  C. Mullineaux,et al.  The Plasma Membrane of the Cyanobacterium Gloeobacter violaceus Contains Segregated Bioenergetic Domains[C][W] , 2011, Plant Cell.

[31]  J. Nickelsen,et al.  Biogenesis of the cyanobacterial thylakoid membrane system--an update. , 2011, FEMS microbiology letters.

[32]  Congming Lu,et al.  Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. , 2010, Journal of plant physiology.

[33]  Xudong Xu,et al.  Outer membrane proteins induced by iron deficiency in Anabaena sp. PCC 7120 , 2009 .

[34]  L. Rai,et al.  Proteomic evaluation of the non-survival of Anabaena doliolum (Cyanophyta) at elevated temperatures , 2009 .

[35]  S. Cheevadhanarak,et al.  Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis , 2009, Proteome Science.

[36]  Ladislav Nedbal,et al.  Metabolic Rhythms of the Cyanobacterium Cyanothece sp. ATCC 51142 Correlate with Modeled Dynamics of Circadian Clock , 2009, Journal of biological rhythms.

[37]  M. A. De la Rosa,et al.  Proteomic analyses of the response of cyanobacteria to different stress conditions , 2009, FEBS letters.

[38]  T. Kuang,et al.  Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. , 2009, Journal of proteome research.

[39]  Chunfang Gao,et al.  Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. , 2009, Journal of experimental botany.

[40]  Peter A. Thompson,et al.  The influence of light quality on akinete formation and germination in the toxic cyanobacterium Anabaena circinalis , 2009 .

[41]  Tatsuro Watanabe,et al.  A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress , 2009, Archives of Microbiology.

[42]  J. Nickelsen,et al.  Interaction of the Periplasmic PratA Factor and the PsbA (D1) Protein during Biogenesis of Photosystem II in Synechocystis sp. PCC 6803* , 2009, Journal of Biological Chemistry.

[43]  S. Cheevadhanarak,et al.  Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. , 2008, FEMS microbiology letters.

[44]  M. Ikeuchi,et al.  Expression and function of a groEL paralog in the thermophilic cyanobacterium Thermosynechococcus elongatus under heat and cold stress , 2008, FEBS letters.

[45]  A. Srivastava,et al.  Salinity-induced physiological and proteomic changes in Anabaena doliolum , 2008 .

[46]  A. Jones The Antarctic ozone hole , 2008 .

[47]  Juliana R. Bordowitz,et al.  Photoregulation of Cellular Morphology during Complementary Chromatic Adaptation Requires Sensor-Kinase-Class Protein RcaE in Fremyella diplosiphon , 2008, Journal of bacteriology.

[48]  Y. Kashino,et al.  Mechanisms to avoid photoinhibition in a desiccation-tolerant cyanobacterium, Nostoc commune. , 2008, Plant & cell physiology.

[49]  E. Mazzucotelli,et al.  Drought tolerance improvement in crop plants: An integrated view from breeding to genomics , 2008 .

[50]  M. Ikeuchi,et al.  Dynamic transcriptional changes in response to rehydration in Anabaena sp. PCC 7120. , 2007, Microbiology.

[51]  Masasuke Yoshida,et al.  Escherichia coli phage‐shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes , 2007, Molecular microbiology.

[52]  B. Montgomery Sensing the light: photoreceptive systems and signal transduction in cyanobacteria , 2007, Molecular microbiology.

[53]  M. Ohmori,et al.  Group 3 sigma factor gene, sigJ, a key regulator of desiccation tolerance, regulates the synthesis of extracellular polysaccharide in cyanobacterium Anabaena sp. strain PCC 7120 , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[54]  D. Kehoe,et al.  Responding to color: the regulation of complementary chromatic adaptation. , 2006, Annual review of plant biology.

[55]  F. Partensky,et al.  Biochemical Bases of Type IV Chromatic Adaptation in Marine Synechococcus spp , 2006, Journal of bacteriology.

[56]  Weidong Huang,et al.  Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses , 2006 .

[57]  I. Suzuki,et al.  The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. , 2006, Journal of experimental botany.

[58]  M. Ikeuchi,et al.  The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. , 2006, Microbiology.

[59]  J. Priscu,et al.  Adaptation and Acclimation of Photosynthetic Microorganisms to Permanently Cold Environments , 2006, Microbiology and Molecular Biology Reviews.

[60]  I. Suzuki,et al.  Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene , 2006, Proteomics.

[61]  M. Hagemann,et al.  Proteomic screening of salt‐stress‐induced changes in plasma membranes of Synechocystis sp. strain PCC 6803 , 2006, Proteomics.

[62]  A. Srivastava,et al.  Salinity and Copper-Induced Oxidative Damage and Changes in the Antioxidative Defence Systems of Anabaena doliolum , 2005 .

[63]  T. Hibino,et al.  Halotolerant Cyanobacterium Aphanothece halophytica Contains NapA-Type Na+/H+ Antiporters with Novel Ion Specificity That Are Involved in Salt Tolerance at Alkaline pH , 2005, Applied and Environmental Microbiology.

[64]  G. Garab,et al.  The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. , 2005, Journal of biochemistry and molecular biology.

[65]  D. Los,et al.  Membrane fluidity and its roles in the perception of environmental signals. , 2004, Biochimica et biophysica acta.

[66]  J. Nishio,et al.  Deactivation of photosynthetic activities is triggered by loss of a small amount of water in a desiccation-tolerant cyanobacterium, Nostoc commune. , 2004, Plant & cell physiology.

[67]  M. Ohmori,et al.  Gene Expression in the Cyanobacterium Anabaena sp. PCC7120 under Desiccation , 2004, Microbial Ecology.

[68]  A. Grossman,et al.  RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness , 2004, Molecular microbiology.

[69]  Kil-Jae Lee,et al.  Acquired tolerance to temperature extremes. , 2003, Trends in plant science.

[70]  A. Görg,et al.  The UV‐B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins , 2002, Molecular microbiology.

[71]  Y. Kanesaki,et al.  Salt Stress Inhibits the Repair of Photodamaged Photosystem II by Suppressing the Transcription and Translation of psbAGenes in Synechocystis 1 , 2002, Plant Physiology.

[72]  D. Singh,et al.  Characterization of Salinity-Tolerant Mutant of Anabaena doliolum Exhibiting Multiple Stress Tolerance , 2002, Current Microbiology.

[73]  R. Sinha,et al.  Role of Lipids and Fatty Acids in Stress Tolerance in Cyanobacteria , 2002 .

[74]  A. Vonshak,et al.  Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. , 2002, Physiologia plantarum.

[75]  S. Lutts,et al.  Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae) , 2002 .

[76]  J. Nishio,et al.  Recovery of photosynthetic systems during rewetting is quite rapid in a terrestrial cyanobacterium, Nostoc commune. , 2002, Plant & cell physiology.

[77]  A. Glatz,et al.  The chaperonins of Synechocystis PCC 6803 differ in heat inducibility and chaperone activity. , 2001, Biochemical and biophysical research communications.

[78]  P. Westhoff,et al.  Biogenesis and origin of thylakoid membranes. , 2001, Biochimica et biophysica acta.

[79]  Y. Kashino,et al.  Acclimation to the growth temperature and the high-temperature effects on photosystem II and plasma membranes in a mesophilic cyanobacterium, Synechocystis sp. PCC6803. , 2001, Plant & cell physiology.

[80]  P. Bauer,et al.  Drought‐Stress Effects on Branch and Mainstem Seed Yield and Yield Components of Determinate Soybean , 2001 .

[81]  I. Suzuki,et al.  Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. , 2001, Plant physiology.

[82]  D. Vaulot,et al.  Cell Cycle Regulation by Light inProchlorococcus Strains , 2001, Applied and Environmental Microbiology.

[83]  B. Palenik Chromatic Adaptation in MarineSynechococcus Strains , 2001, Applied and Environmental Microbiology.

[84]  S. Scherer,et al.  UV PROTECTION IN CYANOBACTERIA , 1999 .

[85]  Wendy C. Magee,et al.  A Cold Shock-Induced Cyanobacterial RNA Helicase , 1999, Journal of bacteriology.

[86]  A. Vonshak,et al.  Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis. , 1999, The New phytologist.

[87]  D. Los,et al.  Structure and expression of fatty acid desaturases. , 1998, Biochimica et biophysica acta.

[88]  D. Häder,et al.  Effects on aquatic ecosystems , 1998 .

[89]  A. Clarke,et al.  The ATP‐dependent Clp protease is essential for acclimation to UV‐B and low temperature in the cyanobacterium Synechococcus , 1998, Molecular microbiology.

[90]  N. Sato,et al.  Involvement of the 5'-untranslated region in cold-regulated expression of the rbpA1 gene in the cyanobacterium Anabaena variabilis M3. , 1998, Nucleic acids research.

[91]  Hitoshi Nakamoto,et al.  Cloning, characterization and functional analysis of groESL operon from thermophilic cyanobacterium Synechococcus vulcanus. , 1997, Biochimica et biophysica acta.

[92]  D. Häder,et al.  Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach , 1997 .

[93]  N. Murata,et al.  Targeted mutagenesis of acyl‐lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. , 1996, The EMBO journal.

[94]  A. Grossman,et al.  Similarity of a Chromatic Adaptation Sensor to Phytochrome and Ethylene Receptors , 1996, Science.

[95]  A. Clarke,et al.  The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942 , 1996, Journal of bacteriology.

[96]  N. Murata,et al.  Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. , 1995, The Biochemical journal.

[97]  G. Friso,et al.  Degradation of the D1 protein of photosystem-II reaction centre by ultraviolet-B radiation requires the presence of functional manganese on the donor side. , 1995, European journal of biochemistry.

[98]  M. Potts Desiccation tolerance of prokaryotes , 1994, Microbiological reviews.

[99]  N. Murata,et al.  The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[100]  N. Murata,et al.  Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[101]  H. Matthijs,et al.  Exposure of the Cyanobacterium Synechocystis PCC6803 to Salt Stress Induces Concerted Changes in Respiration and Photosynthesis , 1993 .

[102]  N. Murata,et al.  Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[103]  G. Guglielmi,et al.  Hormogonium Differentiation in the Cyanobacterium Calothrix: A Photoregulated Developmental Process. , 1991, The Plant cell.

[104]  G. Peschek,et al.  Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes from the cyanobacterium Anacystis nidulans , 1990, Archives of Microbiology.

[105]  N. Murata,et al.  Temperature-Induced Changes in the Fatty Acid Composition of the Cyanobacterium, Synechocystis PCC6803. , 1990, Plant physiology.

[106]  M. Potts,et al.  Novel water stress protein from a desiccation-tolerant cyanobacterium. Purification and partial characterization. , 1989, The Journal of biological chemistry.

[107]  S. Scherer,et al.  A New UV-A/B Protecting Pigment in the Terrestrial Cyanobacterium Nostoc commune. , 1988, Plant physiology.

[108]  R. W. Tuveson,et al.  Role of cloned carotenoid genes expressed in Escherichia coli in protecting against inactivation by near-UV light and specific phototoxic molecules , 1988, Journal of bacteriology.

[109]  D. Kunkel Thylakoid centers: Structures associated with the cyanobacterial photosynthetic membrane system , 1982, Archives of Microbiology.

[110]  J. Berry,et al.  Photosynthetic Response and Adaptation to Temperature in Higher Plants , 1980 .

[111]  J. Golecki Ultrastructure of cell wall and thylakoid membranes of the thermophilic cyanobacterium Synechococcus lividus under the influence of temperature shifts , 1979, Archives of Microbiology.

[112]  Lawrence Bogorad,et al.  COMPLEMENTARY CHROMATIC ADAPTATION IN A FILAMENTOUS BLUE-GREEN ALGA , 1973, The Journal of cell biology.

[113]  L. Rai,et al.  Signal Perception and Mechanism of Salt Toxicity/Tolerance in Photosynthetic Organisms: Cyanobacteria to Plants , 2015 .

[114]  Yannick Huot,et al.  The impact of light pollution on diel changes in the photophysiology of Microcystis aeruginosa , 2014 .

[115]  I. Suzuki,et al.  Proteomic study of the impact of Hik33 mutation in Synechocystis sp. PCC 6803 under normal and salt stress conditions. , 2012, Journal of proteome research.

[116]  D. Kehoe,et al.  Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. , 2012, Molecular plant.

[117]  M. M. Chaves,et al.  Photosynthesis and drought: can we make metabolic connections from available data? , 2011, Journal of experimental botany.

[118]  W. Vermaas,et al.  The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803 , 2005, Archives of Microbiology.

[119]  A. Glatz,et al.  The Synechocystis model of stress: From molecular chaperones to membranes , 1999 .

[120]  D. Hader,et al.  Ultraviolet radiation effects on pigmentation in the cyanobacterium Phormidium uncinatum , 1997 .

[121]  A. Murakami,et al.  Short-term and Long-term Adaptation of the Photosynthetic Apparatus: Homeostatic Properties of Thylakoids , 1994 .

[122]  D. Karentz,et al.  Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: Potential protection from ultraviolet exposure , 1991 .

[123]  Anne M. Ruffing,et al.  Bioengineering and Biotechnology Perspective Article the Regulation of Light Sensing and Light-harvesting Impacts the Use of Cyanobacteria as Biotechnology Platforms , 2022 .