Construction of a two-parameters fuzzy outranking relation from fuzzy evaluations

At the early stages of design process, several design concepts are proposed as potential solutions. The selection of the most appropriate one is based on their evaluation with respect to several conflicting criteria. In this paper, we consider the case where the evaluations of design concepts with respect to different criteria are represented by means of fuzzy numbers. We deal with the construction of a two parameters fuzzy outranking relation from fuzzy evaluations. It is based on the aggregation of outranking indices associated with alpha-cuts. This fuzzy outranking index allows the decision maker to adopt different strategies by choosing a degree of optimism and a degree of aggressiveness.

[1]  Benedetto Matarazzo,et al.  New approaches for the comparison of L-R fuzzy numbers: a theoretical and operational analysis , 2001, Fuzzy Sets Syst..

[2]  S. Ovchinnikov,et al.  On strict preference relations , 1991 .

[3]  Mao-Jiun J. Wang,et al.  Ranking fuzzy numbers with integral value , 1992 .

[4]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[5]  Kristin Lee Wood A method for the representation and manipulation of uncertainties in preliminary engineering design , 1990 .

[6]  S. Ovchinnikov STRUCTURE OF FUZZY BINARY RELATIONS , 1981 .

[7]  P. Vincke,et al.  Fuzzy Possibility Graphs and Their Application to Ranking Fuzzy Numbers , 1988 .

[8]  G. Bortolan,et al.  A review of some methods for ranking fuzzy subsets , 1985 .

[9]  R. Yager Families of OWA operators , 1993 .

[10]  J. Fodor,et al.  Valued preference structures , 1994 .

[11]  S. M. Baas,et al.  Rating and ranking of multiple-aspect alternatives using fuzzy sets , 1976, at - Automatisierungstechnik.

[12]  K. Kim,et al.  Ranking fuzzy numbers with index of optimism , 1990 .

[13]  K. Nakamura Preference relations on a set of fuzzy utilities as a basis for decision making , 1986 .

[14]  F. S. Wong,et al.  Fuzzy weighted averages and implementation of the extension principle , 1987 .

[15]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[16]  Bernard De Baets,et al.  Fuzzy preference structures and their characterization. , 1995 .

[17]  Erik K. Antonsson,et al.  Aggregation functions for engineering design trade-offs , 1995, Fuzzy Sets Syst..

[18]  James Martin,et al.  Information engineering , 1981 .

[19]  Kristin L. Wood,et al.  MODELING IMPRECISION AND UNCERTAINTY IN PRELIMINARY ENGINEERING DESIGN , 1990 .

[20]  李幼升,et al.  Ph , 1989 .

[21]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[22]  Salah Abou-Zaid On fuzzy subnear-rings and ideals , 1991 .

[23]  S. Chanas Fuzzy Optimization in Networks , 1987 .

[24]  Sergei Ovchinnikov,et al.  On fuzzy strict preference, indifference, and incomparability relations , 1992 .

[25]  Bobby Schmidt,et al.  Fuzzy math , 2001 .

[26]  Jean Pierre Brans,et al.  HOW TO SELECT AND HOW TO RANK PROJECTS: THE PROMETHEE METHOD , 1986 .

[27]  Ronald R. Yager,et al.  A procedure for ordering fuzzy subsets of the unit interval , 1981, Inf. Sci..

[28]  Bernard De Baets,et al.  Characterizable fuzzy preference structures , 1998, Ann. Oper. Res..

[29]  T. Radecki LEVEL FUZZY SETS , 1977 .

[30]  Ahmed Bufardi,et al.  On the fuzzification of the classical definition of preference structure , 1999, Fuzzy Sets Syst..

[31]  Yufei Yuan Criteria for evaluating fuzzy ranking methods , 1991 .

[32]  D. E. Bell,et al.  Conflicting Objectives in Decisions , 1978 .

[33]  H. Ishibuchi,et al.  Multiobjective programming in optimization of the interval objective function , 1990 .

[34]  J. Baldwin,et al.  Comparison of fuzzy sets on the same decision space , 1979 .

[35]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[36]  Patrice Perny Modélisation, agrégation et exploitation de préférences floues dans une problématique du rangement : bases axiomatiques, procédures et logiciels , 1992 .

[37]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[38]  Jee-Hyong Lee,et al.  A method for ranking fuzzy numbers and its application to decision-making , 1999, IEEE Trans. Fuzzy Syst..

[39]  Didier Dubois,et al.  Ranking fuzzy numbers in the setting of possibility theory , 1983, Inf. Sci..

[40]  Juite Wang,et al.  Ranking engineering design concepts using a fuzzy outranking preference model , 2001, Fuzzy Sets Syst..

[41]  Marc Roubens,et al.  Ranking and defuzzification methods based on area compensation , 1996, Fuzzy Sets Syst..

[42]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.