(Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein-ligand binding.

The binding of 2-amino-5-methylthiazole to the W191G cavity mutant of cytochrome c peroxidase is an ideal test case to investigate the entropic contribution to the binding free energy due to changes in receptor flexibility. The dynamic and thermodynamic role of receptor flexibility are studied by 50 ns-long explicit-solvent molecular dynamics simulations of three separate receptor ensembles: W191G binding a K(+) ion, W191G-2a5mt complex with a closed 190-195 gating loop, and apo with an open loop. We employ a method recently proposed to estimate accurate absolute single-molecule configurational entropies and their differences for systems undergoing conformational transitions. We find that receptor flexibility plays a generally underestimated role in protein-ligand binding (thermo)dynamics and that changes of receptor motional correlation determine such large entropy contributions.

[1]  J Andrew McCammon,et al.  Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: the W191G mutant of cytochrome c peroxidase in water as revealed by molecular dynamics simulations. , 2007, Biochemistry.

[2]  A. Wand,et al.  Conformational entropy in molecular recognition by proteins , 2007, Nature.

[3]  G. Chang,et al.  Erratum: Reversible unfolding of the severe acute respiratory syndrome coronavirus main protease in guanidinium chloride (Biophysical Journal (2007) 92, (1374-1383)) , 2007 .

[4]  Wilfred F van Gunsteren,et al.  Comparison of thermodynamic properties of coarse-grained and atomic-level simulation models. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  M. Gilson,et al.  Ligand configurational entropy and protein binding , 2007, Proceedings of the National Academy of Sciences.

[6]  Jens Carlsson,et al.  Calculations of solute and solvent entropies from molecular dynamics simulations. , 2006, Physical chemistry chemical physics : PCCP.

[7]  Sumeet Salaniwal,et al.  Critical evaluation of methods to incorporate entropy loss upon binding in high‐throughput docking , 2006, Proteins.

[8]  A. M. Ruvinsky Role of binding entropy in the refinement of protein–ligand docking predictions: Analysis based on the use of 11 scoring functions , 2006, J. Comput. Chem..

[9]  R. Baron,et al.  Configurational entropies of lipids in pure and mixed bilayers from atomic-level and coarse-grained molecular dynamics simulations. , 2006, The journal of physical chemistry. B.

[10]  W. F. V. Gunsteren,et al.  Biomolekulare Modellierung: Ziele, Probleme, Perspektiven , 2006 .

[11]  Wilfred F van Gunsteren,et al.  Biomolecular modeling: Goals, problems, perspectives. , 2006, Angewandte Chemie.

[12]  Wilfred F van Gunsteren,et al.  Conformational and dynamical properties of disaccharides in water: a molecular dynamics study. , 2006, Biophysical journal.

[13]  Wilfred F van Gunsteren,et al.  Comparison of atomic-level and coarse-grained models for liquid hydrocarbons from molecular dynamics configurational entropy estimates. , 2006, The journal of physical chemistry. B.

[14]  B. Shoichet,et al.  Probing molecular docking in a charged model binding site. , 2006, Journal of molecular biology.

[15]  J Andrew McCammon,et al.  Target flexibility in molecular recognition. , 2005, Biochimica et biophysica acta.

[16]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[17]  S. Homans,et al.  Probing the Binding Entropy of Ligand–Protein Interactions by NMR , 2005, Chembiochem : a European journal of chemical biology.

[18]  Chris Oostenbrink,et al.  An improved nucleic acid parameter set for the GROMOS force field , 2005, J. Comput. Chem..

[19]  Jens Carlsson,et al.  Absolute and relative entropies from computer simulation with applications to ligand binding. , 2005, The journal of physical chemistry. B.

[20]  Philippe H. Hünenberger,et al.  A fast pairlist‐construction algorithm for molecular simulations under periodic boundary conditions , 2004, J. Comput. Chem..

[21]  J Andrew McCammon,et al.  Discovery of a novel binding trench in HIV integrase. , 2004, Journal of medicinal chemistry.

[22]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[23]  W. V. van Gunsteren,et al.  Estimating entropies from molecular dynamics simulations. , 2004, The Journal of chemical physics.

[24]  G. Klebe,et al.  Ansätze zur Beschreibung und Vorhersage der Bindungsaffinität niedermolekularer Liganden an makromolekulare Rezeptoren , 2002 .

[25]  G. Klebe,et al.  Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. , 2002, Angewandte Chemie.

[26]  H. Carlson Protein flexibility and drug design: how to hit a moving target. , 2002, Current opinion in chemical biology.

[27]  Wilfred F van Gunsteren,et al.  Simulations of apo and holo-fatty acid binding protein: structure and dynamics of protein, ligand and internal water. , 2002, Journal of molecular biology.

[28]  D. Goodin,et al.  Artificial protein cavities as specific ligand-binding templates: characterization of an engineered heterocyclic cation-binding site that preserves the evolved specificity of the parent protein. , 2002, Journal of molecular biology.

[29]  Mark A. Miller,et al.  Why is it so difficult to simulate entropies, free energies, and their differences? , 2001, Accounts of chemical research.

[30]  M. Stone,et al.  NMR relaxation studies of the role of conformational entropy in protein stability and ligand binding. , 2001, Accounts of chemical research.

[31]  Julie D. Forman-Kay,et al.  The 'dynamics' in the thermodynamics of binding , 1999, Nature Structural Biology.

[32]  A. Cooper,et al.  Thermodynamic analysis of biomolecular interactions. , 1999, Current opinion in chemical biology.

[33]  A. Davis,et al.  Hydrogen Bonding, Hydrophobic Interactions, and Failure of the Rigid Receptor Hypothesis. , 1999, Angewandte Chemie.

[34]  Andrew M. Davis,et al.  Die Bedeutung der Balance von Wasserstoffbrückenbindungen und hydrophoben Wechselwirkungen im Wirkstoff‐Rezeptor‐Komplex , 1999 .

[35]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1998 .

[36]  D B Goodin,et al.  Introduction of novel substrate oxidation into cytochrome c peroxidase by cavity complementation: oxidation of 2-aminothiazole and covalent modification of the enzyme. , 1997, Biochemistry.

[37]  M. Gilson,et al.  The statistical-thermodynamic basis for computation of binding affinities: a critical review. , 1997, Biophysical journal.

[38]  Gerhard Klebe,et al.  What Can We Learn from Molecular Recognition in Protein–Ligand Complexes for the Design of New Drugs? , 1996 .

[39]  Hans Böhm,et al.  Was läßt sich aus der molekularen Erkennung in Protein‐Ligand‐Komplexen für das Design neuer Wirkstoffe lernen? , 1996 .

[40]  M. M. Fitzgerald,et al.  A ligand-gated, hinged loop rearrangement opens a channel to a buried artificial protein cavity , 1996, Nature Structural Biology.

[41]  E. Cera,et al.  Thermodynamic Theory of Site-Specific Binding Processes in Biological Macromolecules , 1996 .

[42]  M. M. Fitzgerald,et al.  The role of aspartate‐235 in the binding of cations to an artificial cavity at the radical site of cytochrome c peroxidase , 1995, Protein science : a publication of the Protein Society.

[43]  D. Koshland The Key–Lock Theory and the Induced Fit Theory , 1995 .

[44]  D. E. Koshland Das Schüssel‐Schloß‐Prinzip und die Induced‐fit‐Theorie , 1994 .

[45]  W F van Gunsteren,et al.  Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. , 1994, Journal of molecular biology.

[46]  Arthur G. Palmer,et al.  NMR order parameters and free energy: an analytical approach and its application to cooperative calcium(2+) binding by calbindin D9k , 1993 .

[47]  J. Åqvist,et al.  Ion-water interaction potentials derived from free energy perturbation simulations , 1990 .

[48]  P. Dean,et al.  Molecular Foundations of Drug-Receptor Interaction , 1987 .

[49]  A. Mclachlan Gene duplications in the structural evolution of chymotrypsin. , 1979, Journal of molecular biology.

[50]  Richard H. Henchman,et al.  Revisiting free energy calculations: a theoretical connection to MM/PBSA and direct calculation of the association free energy. , 2004, Biophysical journal.

[51]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .