Novel deposition techniques for metal oxide: Prospects for gas sensing

[1]  P. Gouma Nanoscale Polymorphic Oxides for Selective Chemosensors , 2011 .

[2]  P. Maddalena,et al.  (Ti, Sn)O2 binary solid solutions for gas sensing: Spectroscopic, optical and transport properties , 2008 .

[3]  Maurizio Martino,et al.  Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation , 2007 .

[4]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[5]  Mariusz Twardowski,et al.  Sol‐Gel Inks for Direct‐Write Assembly of Functional Oxides , 2007 .

[6]  Chih-hung Chang,et al.  Functional Porous Tin Oxide Thin Films Fabricated by Inkjet Printing Process , 2007 .

[7]  Nicolae Barsan,et al.  Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors , 2007 .

[8]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[9]  Francesca Peiró,et al.  A Novel Mesoporous CaO‐Loaded In2O3 Material for CO2 Sensing , 2007 .

[10]  R. Moos,et al.  Direct Thermoelectric Hydrocarbon Gas Sensors Based on ${\rm SnO}_{2}$ , 2007, IEEE Sensors Journal.

[11]  D. Zhao,et al.  Mesostructured pure and copper-catalyzed tungsten oxide for NO2 detection , 2007 .

[12]  Ralf Moos,et al.  Electrodeposited and Sol-gel Precipitated p-type SrTi1-xFexO3-δ Semiconductors for Gas Sensing , 2007, Sensors.

[13]  Douglas C. Meier,et al.  Coupling Nanowire Chemiresistors with MEMS Microhotplate Gas Sensing Platforms , 2007 .

[14]  M. Sanati,et al.  Catalytic properties of oxide nanoparticles applied in gas sensors , 2007 .

[15]  Bozhi Tian,et al.  Synthesis and Characterization of Chromium‐Doped Mesoporous Tungsten Oxide for Gas Sensing Applications , 2007 .

[16]  Jooho Moon,et al.  Organic thin film transistor using silver electrodes by the ink-jet printing technology , 2007 .

[17]  J. Fergus Perovskite oxides for semiconductor-based gas sensors , 2007 .

[18]  M. Lumbreras,et al.  Tungsten trioxide thin films prepared by electrostatic spray deposition technique , 2007 .

[19]  P. Yang,et al.  Chemical sensing with nanowires using electrical and optical detection , 2007 .

[20]  Craig A. Grimes,et al.  A new benchmark for TiO2 nanotube array growth by anodization , 2007 .

[21]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[22]  Ralf Moos,et al.  Direct thermoelectric gas sensors: Design aspects and first gas sensors , 2007 .

[23]  J. Leckie,et al.  An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. , 2007, Nano letters.

[24]  Jeffrey W. Fergus,et al.  Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases , 2007 .

[25]  Weiya Zhou,et al.  Growth of Binary Oxide Nanowires , 2007 .

[26]  Gengfeng Zheng,et al.  Nanowire-Based Nanoelectronic Devices in the Life Sciences , 2007 .

[27]  K. Sahner,et al.  Modeling of hydrocarbon sensors based on p-type semiconducting perovskites. , 2007, Physical chemistry chemical physics : PCCP.

[28]  A. Jaworek,et al.  Electrospray droplet sources for thin film deposition , 2007 .

[29]  Alberto Piqué,et al.  Laser Direct-Write Techniques for Printing of Complex Materials , 2007 .

[30]  A. Hierlemann,et al.  Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films , 2006 .

[31]  T. Choi,et al.  Fabrication and electrical characterization of circuits based on individual tin oxide nanowires , 2006, Nanotechnology.

[32]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[33]  Sarah Fearn,et al.  Combinatorial searching for novel mixed conductors , 2006 .

[34]  A. Gurlo,et al.  Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  M. Batzill,et al.  Surface Science Studies of Gas Sensing Materials: SnO2 , 2006, Sensors (Basel, Switzerland).

[36]  Nicolae Barsan,et al.  Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles , 2006 .

[37]  D. Y. Kim,et al.  Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. , 2006, Nano letters.

[38]  D. Meier,et al.  Integration of nanostructured materials with MEMS microhotplate platforms to enhance chemical sensor performance , 2006 .

[39]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[40]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[41]  Julian Carter,et al.  Ink‐jet printing: The route to production of full‐color P‐OLED displays , 2006 .

[42]  S. Akbar,et al.  Novel Structural Modulation in Ceramic Sensors Via Redox Processing in Gas Buffers , 2006 .

[43]  V. M. Mecea,et al.  Is quartz crystal microbalance really a mass sensor , 2006 .

[44]  Shanhui Fan,et al.  Direct‐Write Assembly of Three‐Dimensional Photonic Crystals: Conversion of Polymer Scaffolds to Silicon Hollow‐Woodpile Structures , 2006 .

[45]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[46]  M. Vrnata,et al.  Thin organic layers prepared by MAPLE for gas sensor application , 2006, 2006 Conference on Optoelectronic and Microelectronic Materials and Devices.

[47]  Young-Jei Oh,et al.  Gas sensing properties of ZnO thin films prepared by microcontact printing , 2006 .

[48]  Giorgio Sberveglieri,et al.  Tin oxide nanobelts electrical and sensing properties , 2005 .

[49]  Julian R. G. Evans,et al.  Library preparation using an aspirating-dispensing ink-jet printer for combinatorial studies in ceramics , 2005 .

[50]  Y. Shimizu,et al.  Preparation of large mesoporous SnO2 powder for gas sensor application , 2005 .

[51]  Sheikh A. Akbar,et al.  TiO2–SnO2 nanostructures and their H2 sensing behavior , 2005 .

[52]  T. Hyodo,et al.  Bulk acoustic wave resonator as a sensing platform for NOx at high temperatures , 2005 .

[53]  Makoto Egashira,et al.  Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: Effects of preparation and pretreatment conditions , 2005 .

[54]  Wenfeng Shen,et al.  The preparation of ZnO based gas-sensing thin films by ink-jet printing method , 2005 .

[55]  Meilin Liu,et al.  A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition , 2005 .

[56]  Bruce W Wessels,et al.  Spinel humidity sensors prepared by thermal spray direct writing , 2005 .

[57]  Jiří Homola,et al.  Comparison of E. coli O157:H7 preparation methods used for detection with surface plasmon resonance sensor , 2005 .

[58]  Ghenadii Korotcenkov,et al.  Gas Response Control Through Structural and Chemical Modification of Metal Oxide Films: State of the Art and Approaches , 2005 .

[59]  Makoto Egashira,et al.  Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2 , 2005 .

[60]  Jooho Moon,et al.  Vacuum‐Assisted Microfluidic Lithography of Ceramic Microstructures , 2005 .

[61]  Jian Wang,et al.  Two methods to generate multiple compositions in combinatorial ink-jet printing , 2005 .

[62]  Choongho Yu,et al.  Integration of metal oxide nanobelts with microsystems for nerve agent detection , 2005 .

[63]  J. Lewis,et al.  Phase behavior and rheological properties of polyelectrolyte inks for direct-write assembly. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[64]  J. Lewis Colloidal Processing of Ceramics , 2004 .

[65]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[66]  M. Heule,et al.  Patterning colloidal suspensions by selective wetting of microcontact-printed surfaces , 2004 .

[67]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[68]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[69]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[70]  Y. Dzenis,et al.  Spinning Continuous Fibers for Nanotechnology , 2004, Science.

[71]  Nicolae Barsan,et al.  Flame spray synthesis of tin dioxide nanoparticles for gas sensing , 2004 .

[72]  Sotiris E. Pratsinis,et al.  Flame spray synthesis of Pd/Al2O3 catalysts and their behavior in enantioselective hydrogenation , 2004 .

[73]  Joseph Cesarano,et al.  Directed Colloidal Assembly of Linear and Annular Lead Zirconate Titanate Arrays , 2004 .

[74]  Sheikh A. Akbar,et al.  Ceramics for chemical sensing , 2003 .

[75]  Sheikh A. Akbar,et al.  Ceramic electrolytes and electrochemical sensors , 2003 .

[76]  M. J. Edirisinghe,et al.  Solid freeform fabrication of ceramics , 2003 .

[77]  Y. Matsushima,et al.  Fabrication of SnO2 particle-layer on the glass substrate using electrospray pyrolysis method and the gas sensitivity for H2 , 2003 .

[78]  J. Fergus Doping and defect association in oxides for use in oxygen sensors , 2003 .

[79]  Q. Li,et al.  Nanoparticle Inks for Directed Assembly of Three‐Dimensional Periodic Structures , 2003 .

[80]  M. Mohebi,et al.  Combinatorial Ink‐Jet Printer for Ceramics: Calibration , 2003 .

[81]  Ludwig J. Gauckler,et al.  Powder‐Based Ceramic Meso‐ and Microscale Fabrication Processes , 2003 .

[82]  A. Rothschild,et al.  Numerical computation of chemisorption isotherms for device modeling of semiconductor gas sensors , 2003 .

[83]  Nobuhiko Tsuji,et al.  Sensing characteristics of an optical fiber sensor for hydrogen leak , 2003 .

[84]  Ludwig J. Gauckler,et al.  Miniaturised arrays of tin oxide gas sensors on single microhotplate substrates fabricated by micromolding in capillaries , 2003 .

[85]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[86]  Peidong Yang,et al.  SnO2 Nanoribbons as NO2 Sensors: Insights from First Principles Calculations , 2003 .

[87]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[88]  Yeshayahu Lifshitz,et al.  Oxide‐Assisted Growth of Semiconducting Nanowires , 2003 .

[89]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[90]  Younan Xia,et al.  Fabrication of Titania Nanofibers by Electrospinning , 2003 .

[91]  Jayant Kumar,et al.  Metal Oxide-Coated Polymer Nanofibers , 2003 .

[92]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[93]  T. Shiosaki,et al.  Fabrication of Ferroelectric Pb(Zr,Ti)O3 Thin Films with Various Zr/Ti Ratios by Ink-Jet Printing , 2002 .

[94]  A. Rothschild,et al.  Quantitative evaluation of chemisorption processes on semiconductors , 2002 .

[95]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[96]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[97]  Joseph Cesarano,et al.  Colloidal inks for directed assembly of 3-D periodic structures , 2002 .

[98]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[99]  Kengo Shimanoe,et al.  Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor , 2001 .

[100]  N. Yamazoe,et al.  NASICON thick film-based CO2 sensor prepared by a sol–gel method , 2001 .

[101]  P. Coveney,et al.  Combinatorial searches of inorganic materials using the ink-jet printer: science, philosophy and technology , 2001 .

[102]  Susan Savage,et al.  SiC Based Field Effect Gas Sensors for Industrial Applications , 2001 .

[103]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[104]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[105]  John Evans,et al.  Direct ink jet printing of ceramics: Experiment in teleology , 2001 .

[106]  N. Bârsan,et al.  Micromachined metal oxide gas sensors: opportunities to improve sensor performance , 2001 .

[107]  Charles M. Lieber,et al.  Diameter-Selective Synthesis of Semiconductor Nanowires , 2000 .

[108]  Douglas B. Chrisey,et al.  The Power of Direct Writing , 2000, Science.

[109]  Ralf Moos,et al.  Materials for temperature independent resistive oxygen sensors for combustion exhaust gas control , 2000 .

[110]  S. Sampath,et al.  Thermal-Spray Processing of Materials , 2000 .

[111]  Sanjay Sampath,et al.  Thermal Spray: Current Status and Future Trends , 2000 .

[112]  G. Auner,et al.  Platinum–aluminum nitride–silicon carbide diodes as combustible gas sensors , 2000 .

[113]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[114]  W. Kang,et al.  Hydrogen sensing characteristics of Pd-SiC schottky diode operating at high temperature , 1999 .

[115]  Robert M. Metzger,et al.  On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide , 1998 .

[116]  R. Waser,et al.  Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics , 1998 .

[117]  Ingemar Lundström,et al.  Hydrogen Sensing Mechanisms of Metal−Insulator Interfaces , 1998 .

[118]  Sibudjing Kawi,et al.  High-surface-area SnO2 : a novel semiconductor-oxide gas sensor , 1998 .

[119]  W. Moritz,et al.  High temperature semiconductor sensor for the detection of fluorine , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[120]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[121]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[122]  M. Holzinger,et al.  Fast CO2-selective potentiometric sensor with open reference electrode , 1996 .

[123]  George M. Whitesides,et al.  Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching , 1993 .

[124]  S. Akbar,et al.  Solid‐State Gas Sensors: A Review , 1992 .

[125]  C. Mari,et al.  A chlorine gas potentiometric sensor , 1992 .

[126]  T. Wolkenstein,et al.  Electronic Processes on Semiconductor Surfaces during Chemisorption , 1991 .

[127]  Rainer Waser,et al.  dc Electrical Degradation of Perovskite‐Type Titanates: III, A Model of the Mechanism , 1990 .

[128]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[129]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[130]  G. Heiland,et al.  Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen , 1957 .

[131]  一郎 松原,et al.  金-チタニア CO 酸化触媒を用いた熱電式ガスセンサ , 2007 .

[132]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[133]  Sheikh A. Akbar,et al.  Nanocarving of titania (TiO2): a novel approach for fabricating chemical sensing platform , 2004 .

[134]  M. Heule Shaping ceramics in small scale - from microcomponents to gas sensors , 2003 .

[135]  J. Gerblinger,et al.  Influence of dopants on the response time and the signals of lambda sensors based on thin films of strontium titanate , 1992 .

[136]  H. Tuller Review of electrical properties of metal oxides as applied to temperature and chemical sensing , 1983 .