A MATLAB Package of Iterative Regularization Methods and Large-Scale Test Problems ∗
暂无分享,去创建一个
[1] I. I. Rushakov,et al. Computed Tomography , 2019, Compendium of Biomedical Instrumentation.
[2] Per Christian Hansen,et al. AIR Tools II: algebraic iterative reconstruction methods, improved implementation , 2017, Numerical Algorithms.
[3] Fabiana Zama,et al. Uniform Penalty inversion of two-dimensional NMR relaxation data , 2016, ArXiv.
[4] Yves Wiaux,et al. Fast Nonnegative Least Squares Through Flexible Krylov Subspaces , 2015, SIAM J. Sci. Comput..
[5] Per Christian Hansen,et al. Semi-convergence properties of Kaczmarz’s method , 2014 .
[6] James G. Nagy,et al. Generalized Arnoldi-Tikhonov Method for Sparse Reconstruction , 2014, SIAM J. Sci. Comput..
[7] J. Nagy,et al. Rotational image deblurring with sparse matrices , 2013, BIT Numerical Mathematics.
[8] Tieyong Zeng,et al. A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..
[9] Per Christian Hansen,et al. Generalized row-action methods for tomographic imaging , 2013, Numerical Algorithms.
[10] Maria Rosaria Russo,et al. A GCV based Arnoldi-Tikhonov regularization method , 2013, BIT Numerical Mathematics.
[11] Tao Min,et al. INVERSE ESTIMATION OF THE INITIAL CONDITION FOR THE HEAT EQUATION , 2013 .
[12] L. Gladden,et al. Numerical estimation of relaxation and diffusion distributions in two dimensions. , 2012, Progress in nuclear magnetic resonance spectroscopy.
[13] Lei Shi,et al. Gridding aeromagnetic data using inverse interpolation , 2011 .
[14] P. Hansen. Discrete Inverse Problems: Insight and Algorithms , 2010 .
[15] Per Christian Hansen,et al. Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.
[16] Lothar Reichel,et al. Non-negativity and iterative methods for ill-posed problems , 2004 .
[17] James G. Nagy,et al. Iterative Methods for Image Deblurring: A Matlab Object-Oriented Approach , 2004, Numerical Algorithms.
[18] Lothar Reichel,et al. Enriched Krylov subspace methods for ill-posed problems , 2003 .
[19] D. Calvetti,et al. Tikhonov regularization and the L-curve for large discrete ill-posed problems , 2000 .
[20] J. Nagy,et al. Enforcing nonnegativity in image reconstruction algorithms , 2000, SPIE Optics + Photonics.
[21] D. Calvetti,et al. GMRES-type methods for inconsistent systems , 2000 .
[22] B. Welsh,et al. Imaging Through Turbulence , 1996 .
[23] Florin Popentiu,et al. Iterative identification and restoration of images , 1993, Comput. Graph..
[24] Ken D. Sauer,et al. A local update strategy for iterative reconstruction from projections , 1993, IEEE Trans. Signal Process..
[25] G. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[26] James G. Nagy,et al. Large-Scale Inverse Problems in Imaging , 2015, Handbook of Mathematical Methods in Imaging.
[27] Maria Rosaria Russo,et al. On Krylov projection methods and Tikhonov regularization , 2015 .
[28] Paolo Novati,et al. Automatic parameter setting for Arnoldi-Tikhonov methods , 2014, J. Comput. Appl. Math..
[29] K. Siddaraju,et al. DIGITAL IMAGE RESTORATION , 2011 .
[30] Julianne Chung,et al. Numerical approaches for large-scale ill-posed inverse problems , 2009 .
[31] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[32] Brendt Wohlberg,et al. An efficient algorithm for sparse representations with lp data fidelity term , 2008 .
[33] Noise propagation in regularizing iterations for image deblurring , 2008 .
[34] J. Nagy,et al. A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .
[35] Misha Elena Kilmer,et al. A Projection-Based Approach to General-Form Tikhonov Regularization , 2007, SIAM J. Sci. Comput..
[36] Jianhong Shen,et al. Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..
[37] Mario Bertero,et al. Introduction to Inverse Problems in Imaging , 1998 .
[38] C. Vogel. Computational Methods for Inverse Problems , 1987 .