A MATLAB Package of Iterative Regularization Methods and Large-Scale Test Problems ∗

This paper describes a new MATLAB software package of iterative regularization methods and test problems for large-scale linear inverse problems. The software package, called IR TOOLS, serves two related purposes: we provide implementations of a range of iterative solvers, including several recently proposed methods that are not available elsewhere, and we provide a set of large-scale test problems in the form of discretizations of 2D linear inverse problems. The solvers include iterative regularization methods where the regularization is due to the semi-convergence of the iterations, Tikhonov-type formulations where the regularization is explicitly formulated in the form of a regularization term, and methods that can impose bound constraints on the computed solutions. All the iterative methods are implemented in a very flexible fashion that allows the problem’s coefficient matrix to be available as a (sparse) matrix, a function handle, or an object. The most basic call to all of the various iterative methods requires only this matrix and the right hand side vector; if the method uses any special stopping criteria, regularization parameters, etc., then default values are set automatically by the code. Moreover, through the use of an optional input structure, the user can also have full control of any of the algorithm parameters. The test problems represent realistic large-scale problems found in image reconstruction and several other applications. Numerical examples illustrate the various algorithms and test problems available in this package. ∗We acknowledge funding from Advanced Grant No. 291405 from the European Research Council and US National Science Foundation under grant no. DMS-1522760. 1 ar X iv :1 71 2. 05 60 2v 2 [ m at h. N A ] 1 J ul 2 01 8

[1]  I. I. Rushakov,et al.  Computed Tomography , 2019, Compendium of Biomedical Instrumentation.

[2]  Per Christian Hansen,et al.  AIR Tools II: algebraic iterative reconstruction methods, improved implementation , 2017, Numerical Algorithms.

[3]  Fabiana Zama,et al.  Uniform Penalty inversion of two-dimensional NMR relaxation data , 2016, ArXiv.

[4]  Yves Wiaux,et al.  Fast Nonnegative Least Squares Through Flexible Krylov Subspaces , 2015, SIAM J. Sci. Comput..

[5]  Per Christian Hansen,et al.  Semi-convergence properties of Kaczmarz’s method , 2014 .

[6]  James G. Nagy,et al.  Generalized Arnoldi-Tikhonov Method for Sparse Reconstruction , 2014, SIAM J. Sci. Comput..

[7]  J. Nagy,et al.  Rotational image deblurring with sparse matrices , 2013, BIT Numerical Mathematics.

[8]  Tieyong Zeng,et al.  A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..

[9]  Per Christian Hansen,et al.  Generalized row-action methods for tomographic imaging , 2013, Numerical Algorithms.

[10]  Maria Rosaria Russo,et al.  A GCV based Arnoldi-Tikhonov regularization method , 2013, BIT Numerical Mathematics.

[11]  Tao Min,et al.  INVERSE ESTIMATION OF THE INITIAL CONDITION FOR THE HEAT EQUATION , 2013 .

[12]  L. Gladden,et al.  Numerical estimation of relaxation and diffusion distributions in two dimensions. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[13]  Lei Shi,et al.  Gridding aeromagnetic data using inverse interpolation , 2011 .

[14]  P. Hansen Discrete Inverse Problems: Insight and Algorithms , 2010 .

[15]  Per Christian Hansen,et al.  Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.

[16]  Lothar Reichel,et al.  Non-negativity and iterative methods for ill-posed problems , 2004 .

[17]  James G. Nagy,et al.  Iterative Methods for Image Deblurring: A Matlab Object-Oriented Approach , 2004, Numerical Algorithms.

[18]  Lothar Reichel,et al.  Enriched Krylov subspace methods for ill-posed problems , 2003 .

[19]  D. Calvetti,et al.  Tikhonov regularization and the L-curve for large discrete ill-posed problems , 2000 .

[20]  J. Nagy,et al.  Enforcing nonnegativity in image reconstruction algorithms , 2000, SPIE Optics + Photonics.

[21]  D. Calvetti,et al.  GMRES-type methods for inconsistent systems , 2000 .

[22]  B. Welsh,et al.  Imaging Through Turbulence , 1996 .

[23]  Florin Popentiu,et al.  Iterative identification and restoration of images , 1993, Comput. Graph..

[24]  Ken D. Sauer,et al.  A local update strategy for iterative reconstruction from projections , 1993, IEEE Trans. Signal Process..

[25]  G. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[26]  James G. Nagy,et al.  Large-Scale Inverse Problems in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[27]  Maria Rosaria Russo,et al.  On Krylov projection methods and Tikhonov regularization , 2015 .

[28]  Paolo Novati,et al.  Automatic parameter setting for Arnoldi-Tikhonov methods , 2014, J. Comput. Appl. Math..

[29]  K. Siddaraju,et al.  DIGITAL IMAGE RESTORATION , 2011 .

[30]  Julianne Chung,et al.  Numerical approaches for large-scale ill-posed inverse problems , 2009 .

[31]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[32]  Brendt Wohlberg,et al.  An efficient algorithm for sparse representations with lp data fidelity term , 2008 .

[33]  Noise propagation in regularizing iterations for image deblurring , 2008 .

[34]  J. Nagy,et al.  A weighted-GCV method for Lanczos-hybrid regularization. , 2007 .

[35]  Misha Elena Kilmer,et al.  A Projection-Based Approach to General-Form Tikhonov Regularization , 2007, SIAM J. Sci. Comput..

[36]  Jianhong Shen,et al.  Deblurring images: Matrices, spectra, and filtering , 2007, Math. Comput..

[37]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[38]  C. Vogel Computational Methods for Inverse Problems , 1987 .