Determination of long-term changes in the Earth's gravity field from satellite laser ranging observations

Temporal changes in the Earth's gravity field have been determined by analyzing satellite laser ranging (SLR) observations of eight geodetic satellites using data spanning an interval of over 20 years. The satellites used in the analysis include Starlette, LAGEOS 1 and 2, Ajisai, Etalon 1 and 2, Stella, and BE-C. Geophysical parameters, related to both secular and long-period variations in the Earth's gravity field, including the geopotential zonal rates ( , , , , and ) and the 18.6-year tide parameter, were estimated. The estimated values for these parameters are ; ; ; ; ; (centimeters) and S18.6+20 = −0.1±0.2 (centimeters). The amplitude and phase for the 18.6-year tide are in general agreement with the effects predicted by the Earth's mantle anelasticity. The solution accuracy was evaluated by considering the effects of errors in various non-estimated dynamical model parameters and by varying the data span and data sets used in the solution. Estimates for from individual LAGEOS 1 and Starlette SLR data sets are in good agreement. The lumped sum values for and are very different for LAGEOS 1 and Starlette. The zonal rate determination is limited to degree 6 with the current SLR data sets. Analysis of the sensitivity of the solution for the zonal rates to the satellite tracking data span suggests that the temporal extension of the current SLR data sets will enhance the solution of zonal rates beyond degree 6.

[1]  A new method for computing the spectrum of the gravitational perturbations on satellite orbits , 1995 .

[2]  Bob E Schutz,et al.  APPLICATION OF ENCKE'S METHOD TO LONG ARC ORBIT DETERMINATION SOLUTIONS , 1990 .

[3]  W. M. Kaula Theory of satellite geodesy , 1966 .

[4]  Bob E. Schutz,et al.  Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2 , 1994 .

[5]  Bob E. Schutz,et al.  Anisotropic reflection effect on satellite, Ajisai , 1995 .

[6]  Bob E. Schutz,et al.  Station coordinates, baselines, and Earth rotation from LAGEOS laser ranging: 1976–1984 , 1985 .

[7]  R. Nerem,et al.  Secular Variations of the Zonal Harmonics and Polar Motion as Geophysical Constraints , 1996 .

[8]  E. Ivins,et al.  Global geodetic signatures of the Antarctic Ice Sheet , 1997 .

[9]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[10]  J. Wahr,et al.  Effect of melting glaciers on the Earth's rotation and gravitational field: 1965–1984 , 1992 .

[11]  Francis J. Lerch,et al.  Optimum data weighting and error calibration for estimation of gravitational parameters , 1989 .

[12]  S. Bettadpur,et al.  Temporal Variability of Earth’s Gravitational Field from Satellite Laser Ranging , 1996 .

[13]  Erik R. Ivins,et al.  Deep mantle viscous structure with prior estimate and satellite constraint , 1993 .

[14]  John M. Wahr,et al.  The effects of mantle anelasticity on nutations, earth tides, and tidal variations in rotation rate , 1986 .

[15]  Douglas G. Currie,et al.  LAGEOS I once‐per‐revolution force due to solar heating , 1997 .

[16]  A. Cazenave,et al.  Geodynamic parameters derived from 7 years of laser data on Lageos , 1991 .

[17]  G. W. Davis,et al.  The Joint Gravity Model 3 , 1996 .

[18]  J. Marsh,et al.  Starlette geodynamics: The Earth's tidal response , 1985 .

[19]  Thomas A. Herring,et al.  Forced nutations of the Earth: Influence of inner core dynamics: 3. Very long interferometry data analysis , 1991 .

[20]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[21]  Hyung-Jin Rim,et al.  Dynamic orbit determination using GPS measurements from TOPEX/POSEIDON , 1994 .

[22]  N. K. Pavlis,et al.  Temporal variations of the Earth's gravitational field from satellite laser ranging to LAGEOS , 1993 .

[23]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[24]  G. Bierman Factorization methods for discrete sequential estimation , 1977 .

[25]  W. Peltier,et al.  Present-day secular variations in the zonal harmonics of earth's geopotential , 1993 .

[26]  John C. Ries,et al.  Nongravitational effects and the LAGEOS eccentricity excitations , 1997 .

[27]  R. Panfili,et al.  MASS BALANCE OF POLAR ICE FROM LONG WAVELENGTH FEATURES OF THE EARTH'S GRAVITATIONAL FIELD , 1997 .

[28]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[29]  B. Chao,et al.  Long-period variations in gravity field caused by mantle anelasticity , 1996 .

[30]  A. Cazenave,et al.  Temporal Variations of the Gravity Field from Lageos 1 and Lageos 2 Observations , 1996 .

[31]  M. Cheng,et al.  Observed Temporal Variations in the Earth’s Gravity Field from 16-year Starlette Orbit Analysis , 1992 .

[32]  John M. Wahr,et al.  Spectroscopic Analysis of Global Tide Gauge Sea Level Data , 1990 .

[33]  D. Rubincam Postglacial rebound observed by lageos and the effective viscosity of the lower mantle , 1984 .

[34]  M. Cheng,et al.  Long-period perturbations in Starlette orbit and tide solution , 1990 .

[35]  D. Rubincam,et al.  Effects of Earth albedo on the LAGEOS I satellite , 1996 .