Identification of Hybrid Systems: A Tutorial

This tutorial paper is concerned with the identification of hybrid models, i.e. dynamical models whose behavior is determined by interacting continuous and discrete dynamics. Methods specifically aimed at the identification of models with a hybrid structure are of very recent date. After discussing the main issues and difficulties connected with hybrid system identification, and giving an overview of the related literature, this paper focuses on four different approaches for the identification of switched affine and piecewise affine models, namely an algebraic procedure, a Bayesian procedure, a clustering-based procedure, and a bounded-error procedure. The main features of the selected procedures are presented, and possible interactions to still enhance their effectiveness are suggested.

[1]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[2]  Leon O. Chua,et al.  Dynamics of a piecewise-linear resonant circuit , 1982 .

[3]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[4]  Leon O. Chua,et al.  Canonical piecewise-linear analysis , 1983 .

[5]  H. Tong,et al.  ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .

[6]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[7]  S. Billings,et al.  Piecewise linear identification of non-linear systems , 1987 .

[8]  Jan-Erik Strömberg,et al.  Trees as Black-Box Model Structures for Dynamical Systems , 1990 .

[9]  Roy Batruni,et al.  A multilayer neural network with piecewise-linear structure and back-propagation learning , 1991, IEEE Trans. Neural Networks.

[10]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[11]  J.-N. Lin,et al.  Canonical piecewise-linear approximations , 1992 .

[12]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[13]  Lennart Ljung,et al.  Construction of Composite Models from Observed Data , 1992 .

[14]  Leo Breiman,et al.  Hinging hyperplanes for regression, classification, and function approximation , 1993, IEEE Trans. Inf. Theory.

[15]  Saul B. Gelfand,et al.  A tree-structured piecewise linear adaptive filter , 1993, IEEE Trans. Inf. Theory.

[16]  T. Johansen,et al.  Identification of non-linear system structure and parameters using regime decomposition , 1994, Autom..

[17]  Chong-Ho Choi,et al.  Constructive neural networks with piecewise interpolation capabilities for function approximations , 1994, IEEE Trans. Neural Networks.

[18]  O. Mangasarian,et al.  Multicategory discrimination via linear programming , 1994 .

[19]  Eduardo D. Sontag,et al.  Interconnected Automata and Linear Systems: A Theoretical Framework in Discrete-Time , 1996, Hybrid Systems.

[20]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[21]  Gonzalo R. Arce,et al.  Piecewise linear system modeling based on a continuous threshold decomposition , 1996, IEEE Trans. Signal Process..

[22]  Arjan van der Schaft,et al.  Complementarity modelling of hybrid systems , 1997 .

[23]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[24]  Vassilios Petridis,et al.  Identification of switching dynamical systems using multiple models , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[25]  Alfredo C. Desages,et al.  Canonical piecewise-linear approximation of smooth functions , 1998 .

[26]  S. Ernst,et al.  Hinging hyperplane trees for approximation and identification , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[27]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[28]  Don R. Hush,et al.  Efficient algorithms for function approximation with piecewise linear sigmoidal networks , 1998, IEEE Trans. Neural Networks.

[29]  P. Pucar,et al.  On the Hinge-Finding Algorithm for Hinging Hyperplanes , 1998, IEEE Trans. Inf. Theory.

[30]  P. Julián,et al.  High-level canonical piecewise linear representation using a simplicial partition , 1999 .

[31]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[32]  Erik I. Verriest,et al.  Multi-mode system identification , 1999, 1999 European Control Conference (ECC).

[33]  Arnold Neumaier,et al.  Global Optimization by Multilevel Coordinate Search , 1999, J. Glob. Optim..

[34]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[35]  Daniel E. Koditschek,et al.  Piecewise linear homeomorphisms: the scalar case , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[36]  Amir F. Atiya,et al.  A new algorithm for learning in piecewise-linear neural networks , 2000, Neural Networks.

[37]  Paul S. Bradley,et al.  k-Plane Clustering , 2000, J. Glob. Optim..

[38]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[39]  Bart De Schutter,et al.  Optimal Control of a Class of Linear Hybrid Systems with Saturation , 1999, SIAM J. Control. Optim..

[40]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[41]  B. Schutter,et al.  Model predictive control for max-min-plus-scaling systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[42]  Frank L. Lewis,et al.  Adaptive Control of Nonsmooth Dynamic Systems , 2001 .

[43]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[44]  C. Fantuzzi,et al.  Identification of piecewise affine models in noisy environment , 2002 .

[45]  Eberhard Münz,et al.  Identification of hybrid systems using a priori knowledge , 2002 .

[46]  Edoardo Amaldi,et al.  The MIN PFS problem and piecewise linear model estimation , 2002, Discret. Appl. Math..

[47]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[48]  M. Resende,et al.  A Combinatorial Approach to Piecewise Linear Time Series Analysis , 2002 .

[49]  Marco Muselli,et al.  Single-Linkage Clustering for Optimal Classification in Piecewise Affine Regression , 2003, ADHS.

[50]  Jakob Roll Local and Piecewise Affine Approaches to System Identification , 2003 .

[51]  Didier Maquin,et al.  Parameter estimation of switching piecewise linear system , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[52]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[53]  Giancarlo Ferrari-Trecate,et al.  Conditions of Optimal Classification for Piecewise Affine Regression , 2003, HSCC.

[54]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[55]  B. Anderson,et al.  Recursive identification of switched ARX hybrid models: exponential convergence and persistence of excitation , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[56]  R. Vidal Identification of PWARX hybrid models with unknown and possibly different orders , 2004, Proceedings of the 2004 American Control Conference.

[57]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[58]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[59]  S. Paoletti IDENTIFICATION OF PIECEWISE AFFINE MODELS , 2004 .

[60]  A. Juloski,et al.  Data-based hybrid modelling of the component placement process in pick-and-place machines , 2004 .

[61]  Yi Ma,et al.  Identification of hybrid linear time-invariant systems via subspace embedding and segmentation (SES) , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[62]  M. Verhaegen,et al.  Subspace identification of piecewise linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[63]  W. P. M. H. Heemels,et al.  A Bayesian approach to identification of hybrid systems , 2004, IEEE Transactions on Automatic Control.

[64]  Eberhard Münz,et al.  CONTINUOUS OPTIMIZATION APPROACHES TO THE IDENTIFICATION OF PIECEWISE AFFINE SYSTEMS , 2005 .

[65]  W. P. M. H. Heemels,et al.  Comparison of Four Procedures for the Identification of Hybrid Systems , 2005, HSCC.

[66]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[67]  F. Rosenqvist,et al.  Realisation and estimation of piecewise-linear output-error models , 2005, Autom..

[68]  René Vidal,et al.  Identification of Deterministic Switched ARX Systems via Identification of Algebraic Varieties , 2005, HSCC.

[69]  Yasmin L. Hashambhoy,et al.  Recursive Identification of Switched ARX Models with Unknown Number of Models and Unknown Orders , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[70]  Kiyotsugu Takaba,et al.  Identification of piecewise affine systems based on statistical clustering technique , 2004, Autom..

[71]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation and Estimation , 2006, Journal of Mathematical Imaging and Vision.

[72]  A. Juloski,et al.  A BAYESIAN APPROACH TO THE IDENTIFICATION OF PIECEWISE LINEAR OUTPUT ERROR MODELS , 2006 .

[73]  Alberto Bemporad,et al.  An MPC/hybrid system approach to traction control , 2006, IEEE Transactions on Control Systems Technology.

[74]  M. Verhaegen,et al.  ITERATIVE SUBSPACE IDENTIFICATION OF PIECEWISE LINEAR SYSTEMS , 2006 .

[75]  C. Abdallah,et al.  Recent techniques for the identification of piecewise affine and hybrid systems , 2006 .

[76]  Stefano Soatto,et al.  Applications of hybrid system identification in computer vision , 2007, 2007 European Control Conference (ECC).

[77]  Giancarlo Ferrari-Trecate,et al.  Hybrid identification methods for the reconstruction of Genetic Regulatory Networks , 2007, 2007 European Control Conference (ECC).