Estimation of Bourgoyne and Young Model coefficients using Markov Chain Monte Carlo simulation

The Bourgoyne and Young Model (BYM) is used to determine the rate of penetration in oil well drilling processes. To achieve this the model must be parameterized with coefficients that are estimated on the basis of prior experience. Since drilling is a physical process, measurement data may include noise and the model may naturally fail to represent it correctly. In this study the BYM coefficients are determined in the form of probability distributions, rather than fixed values, propagating the uncertainties present in the data and the model itself. This paper therefore describes a probabilistic model and Bayesian inference conducted using Markov Chain Monte Carlo. The results were satisfactory and the probability distributions obtained offer improved insight into the influence of different coefficients on the simulation results.

[1]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[2]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[3]  Kimberly D. Siegmund,et al.  Modeling DNA Methylation in a Population of Cancer Cells , 2008, Statistical applications in genetics and molecular biology.

[4]  Abdullah Saleh Al-Yami,et al.  Using Bayesian Network to Model Drilling Fluids Practices in Saudi Arabia , 2012 .

[5]  Paulo José de Freitas Filho,et al.  Heuristic discretization method for Bayesian Networks , 2014, J. Comput. Sci..

[6]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[7]  Olivier François,et al.  Non-linear regression models for Approximate Bayesian Computation , 2008, Stat. Comput..

[8]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[9]  Keith K. Millheim,et al.  Applied Drilling Engineering , 1986 .

[10]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[11]  R. Kulhavý Bayesian Analysis of Stochastic System Dynamics , 2007 .

[12]  J. Vrugt,et al.  Toward diagnostic model calibration and evaluation: Approximate Bayesian computation , 2013 .

[13]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[14]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[15]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[16]  Mauro Roisenberg,et al.  Generating interpretable Mamdani-type fuzzy rules using a neuro-fuzzy system based on radial basis functions , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[17]  Jasper A. Vrugt,et al.  Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation , 2013 .

[18]  Carsten Wiuf,et al.  Using Likelihood-Free Inference to Compare Evolutionary Dynamics of the Protein Networks of H. pylori and P. falciparum , 2007, PLoS Comput. Biol..

[19]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[20]  Keith K. Millheim,et al.  Applied drilling engineering. Volume 2 , 1986 .

[21]  Mark A. Girolami,et al.  Bayesian inference for differential equations , 2008, Theor. Comput. Sci..

[22]  Bahari Mohamad Hasan,et al.  INTELLIGENT DRILLING RATE PREDICTOR , 2011 .

[23]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[25]  David J. Nott,et al.  Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What's the connection? , 2012 .

[26]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[27]  Christophe Andrieu,et al.  Some discussions of D. Fearnhead and D. Prangle's Read Paper "Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation" , 2012 .

[28]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[29]  S. Edalatkhah,et al.  Bit Selection Optimization Using Artificial Intelligence Systems , 2010 .

[30]  Arnaud Doucet,et al.  An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.

[31]  Tian Li,et al.  The Influence of Objective Function and Acceptability Threshold on Uncertainty Assessment of an Urban Drainage Hydraulic Model with Generalized Likelihood Uncertainty Estimation Methodology , 2015, Water Resources Management.

[32]  F. S. Young,et al.  A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection , 1974 .

[33]  Keith Beven,et al.  Uncertainty estimation of end‐member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment , 2013 .

[34]  Haishen Lü,et al.  Assessing the Uncertainty of the Xinanjiang Rainfall-Runoff Model: Effect of the Likelihood Function Choice on the GLUE Method , 2015 .

[35]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[36]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[37]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[38]  Mohamad Hasan Bahari,et al.  Determining Bourgoyne and Young Model Coefficient Using Genetic Algorithm to Predict Drilling Rate , 2008 .

[39]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.

[40]  Mohamad Hasan Bahari,et al.  Drilling rate prediction using an innovative soft computing approach , 2010 .

[41]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[42]  Anthony Lee,et al.  On the choice of MCMC kernels for approximate Bayesian computation with SMC samplers , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).

[43]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[44]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[45]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .