Multilinear extensions of Grothendieck’s theorem

We introduce a new class of multilinear p-summing operators, which we call multiple p-summing. Using them, we can prove several multilinear generalizations of Grothendieck’s “fundamental theorem of the metric theory of tensor products”. Several applications and improvements of previous results are given.

[1]  I. Villanueva,et al.  Multiple summing operators onC(K) spaces , 2004 .

[2]  I. Villanueva,et al.  Multiple summing operators on Banach spaces , 2003 .

[3]  Verónica Dimant Strongly p-summing multilinear operators , 2003 .

[4]  A. Tonge,et al.  Estimates for absolutely summing norms of polynomials and multilinear maps , 2001 .

[5]  J. Diestel,et al.  Absolutely Summing Operators , 1995 .

[6]  R. Blei Multi-Linear Measure Theory and the Grothendieck Factorization Theorem , 1988 .

[7]  G. Pisier Factorization of Linear Operators and Geometry of Banach Spaces , 1986 .

[8]  E. Schock,et al.  Operator ideals and spaces of bilinear operators , 1985 .

[9]  T. K. Carne Banach Lattices and Extensions of Grothendieck's Inequality , 1980 .

[10]  A. Tonge,et al.  The Von Neumann Inequality for Polynomials in Several Hilbert‐Schmidt Operators , 1978 .

[11]  H. H. Schaefer Banach Lattices and Positive Operators , 1975 .

[12]  D. García Operadores multilineales absolutamente sumantes , 2004 .

[13]  M C Matos,et al.  Absolutely Summing Holomorphic Mappings , 1996 .

[14]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[15]  U. Haagerup The best constants in the Khintchine inequality , 1981 .

[16]  Joram Lindenstrauss,et al.  Classical Banach spaces , 1973 .

[17]  J. Lindenstrauss,et al.  Absolutely summing operators in Lp spaces and their applications , 1968 .

[18]  A. Pietsch,et al.  Absolut p-summierende Abbildungen in normierten Räumen , 1967 .