Wind speed probability density estimation using root-transformed local linear regression

[1]  L. V. Auwera,et al.  The Use of the Weibull Three-Parameter Model for Estimating Mean Wind Power Densities , 1980 .

[2]  W. E. Bardsley Note on the Use of the Inverse Gaussian Distribution for Wind Energy Applications , 1980 .

[3]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[4]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[5]  J. Marron,et al.  Transformations to reduce boundary bias in kernel density estimation , 1994 .

[6]  Jonathan R. M. Hosking,et al.  The four-parameter kappa distribution , 1994, IBM J. Res. Dev..

[7]  E. Bauer CHARACTERISTIC FREQUENCY DISTRIBUTIONS OF REMOTELY SENSED IN SITU AND MODELLED WIND SPEEDS , 1996 .

[8]  Eric R. Scerri,et al.  Wind data evaluation in the Maltese Islands , 1996 .

[9]  Mikhail Alexandrov,et al.  A new three-parameter cloud/aerosol particle size distribution based on the generalized inverse Gaussian density function , 2000, Appl. Math. Comput..

[10]  Mukund Srinivasan,et al.  Performance based design extreme wind loads on a tall building , 2001 .

[11]  A. Tsybakov,et al.  Introduction à l'estimation non-paramétrique , 2003 .

[12]  O. A. Jaramillo,et al.  Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case , 2004 .

[13]  A. Celik A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey , 2004 .

[14]  You-Lin Xu,et al.  On modelling of typhoon‐induced non‐stationary wind speed for tall buildings , 2004 .

[15]  Byung-Wan Jo,et al.  Wind characteristics of existing long span bridge based on measured data , 2005 .

[16]  James F. Manwell,et al.  Book Review: Wind Energy Explained: Theory, Design and Application , 2006 .

[17]  A. Speranza,et al.  Offshore wind climatology over the Mediterranean basin , 2006 .

[18]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[19]  J. A. Carta,et al.  Use of finite mixture distribution models in the analysis of wind energy in the Canarian Archipelago , 2007 .

[20]  Andrea Frisque,et al.  Wind and tall buildings: negatives and positives , 2008 .

[21]  José A. Carta,et al.  Influence of the level of fit of a density probability function to wind-speed data on the WECS mean power output estimation , 2008 .

[22]  I. Jánosi,et al.  Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe , 2008 .

[23]  E. Akpinar,et al.  ESTIMATION OF WIND ENERGY POTENTIAL USING FINITE MIXTURE DISTRIBUTION MODELS , 2009 .

[24]  Harrison H. Zhou,et al.  The root–unroot algorithm for density estimation as implemented via wavelet block thresholding , 2010 .

[25]  Matthew A. Lackner,et al.  Probability distributions for offshore wind speeds , 2009 .

[26]  J. A. Carta,et al.  A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands , 2009 .

[27]  Nils-Bastian Heidenreich,et al.  Bandwidth Selection Methods for Kernel Density Estimation - A Review of Performance , 2010 .

[28]  E.F. El-Saadany,et al.  Supply Adequacy Assessment of Distribution System Including Wind-Based DG During Different Modes of Operation , 2010, IEEE Transactions on Power Systems.

[29]  E.F. El-Saadany,et al.  Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization , 2010, IEEE Transactions on Power Systems.

[30]  E. Erdem,et al.  Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites , 2010 .

[31]  Valerio Lo Brano,et al.  Quality of wind speed fitting distributions for the urban area of Palermo, Italy , 2011 .

[32]  Xiaofu Xiong,et al.  Estimating wind speed probability distribution using kernel density method , 2011 .

[33]  Yi Ding,et al.  Long-Term Reserve Expansion of Power Systems With High Wind Power Penetration Using Universal Generating Function Methods , 2011, IEEE Transactions on Power Systems.

[34]  Srinivasa Rao Rayapudi,et al.  Mixture probability distribution functions to model wind speed distributions , 2012 .

[35]  Yasser Abdel-Rady I. Mohamed,et al.  Supply-Adequacy-Based Optimal Construction of Microgrids in Smart Distribution Systems , 2012, IEEE Transactions on Smart Grid.

[36]  Xing Zhang,et al.  Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy , 2012 .

[37]  Chun Man Chan,et al.  Peak Distributions and Peak Factors of Wind-Induced Pressure Processes on Tall Buildings , 2013 .

[38]  Jan Kleissl,et al.  Solar Energy Forecasting and Resource Assessment , 2013 .

[39]  Wenyuan Li,et al.  Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation , 2013 .

[40]  Takvor H. Soukissian,et al.  Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution , 2013 .

[41]  Jianzhou Wang,et al.  Wind energy potential assessment for the site of Inner Mongolia in China , 2013 .

[42]  Ehab F. El-Saadany,et al.  Optimal Placement and Sizing Method to Improve the Voltage Stability Margin in a Distribution System Using Distributed Generation , 2013, IEEE Transactions on Power Systems.

[43]  Nils-Bastian Heidenreich,et al.  Bandwidth selection for kernel density estimation: a review of fully automatic selectors , 2013, AStA Advances in Statistical Analysis.

[44]  Yao Zhang,et al.  Probabilistic wind power forecasting based on logarithmic transformation and boundary kernel , 2015 .

[45]  Jiang Wu,et al.  Aggregated wind power generation probabilistic forecasting based on particle filter , 2015 .

[46]  Hamidreza Zareipour,et al.  Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm , 2015 .

[47]  Taha B. M. J. Ouarda,et al.  Probability distributions of wind speed in the UAE , 2015 .

[48]  Mehrdad Abedi,et al.  A new method to adequate assessment of wind farms’ power output , 2015 .

[49]  Geev Mokryani,et al.  Active distribution networks planning with integration of demand response , 2015 .

[50]  Atul K. Raturi,et al.  Renewables 2016 Global status report , 2015 .

[51]  Zheng Yan,et al.  Estimating wind speed probability distribution by diffusion-based kernel density method , 2015 .

[52]  Nurulkamal Masseran,et al.  Evaluating wind power density models and their statistical properties , 2015 .

[53]  Bri-Mathias Hodge,et al.  A suite of metrics for assessing the performance of solar power forecasting , 2015 .

[54]  İlker Mert,et al.  A statistical analysis of wind speed data using Burr, generalized gamma, and Weibull distributions in Antakya, Turkey , 2015 .

[55]  Jianzhou Wang,et al.  Wind speed probability distribution estimation and wind energy assessment , 2016 .

[56]  Kasra Mohammadi,et al.  Assessing different parameters estimation methods of Weibull distribution to compute wind power density , 2016 .

[57]  Tao Chen,et al.  A mixture kernel density model for wind speed probability distribution estimation , 2016 .

[58]  Ali Mostafaeipour,et al.  Sensitivity analysis of different wind speed distribution models with actual and truncated wind data: A case study for Kerman, Iran , 2016 .

[59]  T. Ouarda,et al.  Heterogeneous mixture distributions for modeling wind speed, application to the UAE , 2016 .

[60]  Christopher Jung,et al.  High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series , 2016 .

[61]  Talha Arslan,et al.  An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution , 2016 .

[62]  E. Paulescu,et al.  Regression models for hourly diffuse solar radiation , 2016 .

[63]  Pasquale De Falco,et al.  Inverse Burr distribution for extreme wind speed prediction: Genesis, identification and estimation , 2016 .

[64]  Yongsheng Chen,et al.  Short-term wind speed and power forecasting using an ensemble of mixture density neural networks , 2016 .

[65]  Kasra Mohammadi,et al.  Evaluating the suitability of wind speed probability distribution models: A case of study of east and southeast parts of Iran , 2016 .

[66]  Melih Soner Çeliktaş,et al.  Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region , 2016 .

[67]  Fateh Chebana,et al.  Review of criteria for the selection of probability distributions for wind speed data and introduction of the moment and L-moment ratio diagram methods, with a case study , 2016 .

[68]  Carlos Gershenson,et al.  Wind speed forecasting for wind farms: A method based on support vector regression , 2016 .

[69]  Ali Mostafaeipour,et al.  Determination of rated wind speed for maximum annual energy production of variable speed wind turbines , 2017 .

[70]  A. Feijóo,et al.  Four-Parameter Models for Wind Farm Power Curves and Power Probability Density Functions , 2017, IEEE Transactions on Sustainable Energy.

[71]  Omid Alavi,et al.  A particle swarm optimization-based flowchart to select wind speed distribution function , 2017 .

[72]  Shaolong Sun,et al.  A new dynamic integrated approach for wind speed forecasting , 2017 .

[73]  Yitao Liu,et al.  Deep learning based ensemble approach for probabilistic wind power forecasting , 2017 .

[74]  Zhe Chen,et al.  Combined optimization for offshore wind turbine micro siting , 2017 .

[75]  Birdal Senoglu,et al.  Generalized Lindley and Power Lindley distributions for modeling the wind speed data , 2017 .

[76]  Magdy M. A. Salama,et al.  Optimal ESS Allocation for Benefit Maximization in Distribution Networks , 2017, IEEE Transactions on Smart Grid.

[77]  Jon G. McGowan,et al.  Use of Birnbaum-Saunders distribution for estimating wind speed and wind power probability distributions: A review , 2017 .

[78]  Mohamed H. Ahmed,et al.  The impact of wind farm location and control strategy on wind generation penetration and market prices , 2017 .

[79]  Mohammad Ghasem Akbari,et al.  Nonparametric Kernel Estimation Based on Fuzzy Random Variables , 2017, IEEE Transactions on Fuzzy Systems.

[80]  Jie Zhang,et al.  Statistical Representation of Wind Power Ramps Using a Generalized Gaussian Mixture Model , 2018, IEEE Transactions on Sustainable Energy.

[81]  D. Mazzeo,et al.  Estimation of wind speed probability density function using a mixture of two truncated normal distributions , 2018 .

[82]  N. Masseran Integrated approach for the determination of an accurate wind-speed distribution model , 2018, Energy Conversion and Management.

[83]  D. Schindler,et al.  Sensitivity analysis of the system of wind speed distributions , 2018, Energy Conversion and Management.

[84]  S. M. Boudia,et al.  Deep assessment of wind speed distribution models: A case study of four sites in Algeria , 2018 .

[85]  Haiyan Li,et al.  Probability density forecasting of wind power using quantile regression neural network and kernel density estimation , 2018 .

[86]  Guido Carpinelli,et al.  Taguchi's method for probabilistic three-phase power flow of unbalanced distribution systems with correlated Wind and Photovoltaic Generation Systems , 2018 .

[87]  Y. Kantar,et al.  Wind speed analysis using the Extended Generalized Lindley Distribution , 2018 .

[88]  T. Ouarda,et al.  On the mixture of wind speed distribution in a Nordic region , 2018, Energy Conversion and Management.

[89]  Pierluigi Mancarella,et al.  Data-Driven Dynamic Probabilistic Reserve Sizing Based on Dynamic Bayesian Belief Networks , 2019, IEEE Transactions on Power Systems.