Logics based on qualitative descriptors for scene understanding

Abstract An approach for scene understanding based on qualitative descriptors, domain knowledge and logics is proposed in this paper. Qualitative descriptors, qualitative models of shape, colour, topology and location are used for describing any object in the scene. Two kinds of domain knowledge are provided: (i) categorizations of objects according to their qualitative descriptors, and (ii) semantics for describing the affordances, mobility and other functional properties of target objects. First order logics are obtained for reasoning and scene understanding. Tests were carried out at the Interact@Cartesium scenario and promising results were obtained.

[1]  Anthony G. Cohn,et al.  Cognitive Vision: Integrating Symbolic Qualitative Representations with Computer Vision , 2006, Cognitive Vision Systems.

[2]  Zoe Falomir,et al.  Describing Images Using Qualitative Models and Description Logics , 2011, Spatial Cogn. Comput..

[3]  Masaaki Kawahashi,et al.  Renovation of Journal of Visualization , 2010, J. Vis..

[4]  Moritz Tenorth,et al.  Representation and Exchange of Knowledge About Actions, Objects, and Environments in the RoboEarth Framework , 2013, IEEE Transactions on Automation Science and Engineering.

[5]  Leon Sterling,et al.  The art of Prolog (2nd ed.): advanced programming techniques , 1994 .

[6]  Frank Dylla,et al.  Rule-Compliant Navigation with Qualitative Spatial Reasoning , 2011 .

[7]  Mehul Bhatt,et al.  Spatial Computing for Design—an Artificial Intelligence Perspective , 2015 .

[8]  Tandra Ghose,et al.  Generalization between canonical and non-canonical views in object recognition. , 2013, Journal of vision.

[9]  Anthony G. Cohn,et al.  Grounding Language in Perception for Scene Conceptualization in Autonomous Robots , 2014, AAAI Spring Symposia.

[10]  A. Lovett,et al.  Cultural commonalities and differences in spatial problem-solving: A computational analysis , 2011, Cognition.

[11]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[12]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[13]  Brian C. O'Connor,et al.  Modelling what users see when they look at images: a cognitive viewpoint , 2002, J. Documentation.

[14]  Scott E. Fahlman,et al.  Marker-Passing Inference in the Scone Knowledge-Base System , 2006, KSEM.

[15]  Moritz Tenorth,et al.  KnowRob: A knowledge processing infrastructure for cognition-enabled robots , 2013, Int. J. Robotics Res..

[16]  Zoe Falomir,et al.  Qualitative distances and qualitative description of images for indoor scene description and recognition in robotics , 2012, AI Commun..

[17]  Tom Schrijvers,et al.  Under Consideration for Publication in Theory and Practice of Logic Programming Swi-prolog , 2022 .

[18]  Paolo Fogliaroni Qualitative spatial configuration queries: towards next generation access methods for GIS , 2012 .

[19]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[20]  Luis González Abril,et al.  Qualitative distances and qualitative image descriptions for representing indoor scenes in robotics , 2013, Pattern Recognit. Lett..

[21]  Corinne Jörgensen,et al.  Attributes of Images in Describing Tasks , 1998, Inf. Process. Manag..

[22]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[23]  Kai-Florian Richter,et al.  Qualitative matching of spatial information , 2010, GIS '10.

[24]  L. Durieux,et al.  Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective , 2013 .

[25]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[26]  David Vernon Image and vision computing special issue on cognitive vision , 2008, Image Vis. Comput..

[27]  Gérard Ligozat Qualitative Spatial and Temporal Reasoning: Ligozat/Qualitative Spatial and Temporal Reasoning , 2013 .

[28]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[29]  Mary-Anne Williams Representation = Grounded Information , 2008, PRICAI.

[30]  Kenneth D. Forbus,et al.  Efficient Learning of Qualitative Descriptions for Sketch Recognition , 2006 .

[31]  Xiaoping Chen,et al.  Ontology Based Object Categorization for Robots , 2005, PAKM.

[32]  Luis González Abril,et al.  Towards a Similarity between Qualitative Image Descriptions for Comparing Real Scenes , 2014, AAAI Spring Symposia.

[33]  Jorge Dias,et al.  Touch attention Bayesian models for robotic active haptic exploration of heterogeneous surfaces , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[35]  Luis González Abril,et al.  Measures of Similarity Between Objects Based on Qualitative Shape Descriptions , 2013, Spatial Cogn. Comput..

[36]  Mari Laine-Hernandez,et al.  Image semantics in the description and categorization of journalistic photographs , 2007, ASIST.

[37]  David M. Mark,et al.  Cognitive and Linguistic Aspects of Geographic Space: New Perspectives on Geographic Information Research , 1991 .

[38]  Leon Sterling,et al.  The Art of Prolog - Advanced Programming Techniques , 1986 .

[39]  Luis González Abril,et al.  A model for the qualitative description of images based on visual and spatial features , 2012, Comput. Vis. Image Underst..

[40]  Zoe Falomir,et al.  A Model for Qualitative Colour Description and Comparison , 2011 .

[41]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[42]  Christian Freksa,et al.  Qualitative spatial reasoning , 1990, Forschungsberichte, TU Munich.

[43]  Andrew M. Lovett,et al.  Modeling Spatial Abstraction during Mental Rotation , 2014, CogSci.

[44]  Esther Antúnez,et al.  Towards Active Image Segmentation: the Foveal Bounded Irregular Pyramid , 2013 .

[45]  Pietro Perona,et al.  Bayesian reasoning on qualitative descriptions from images and speech , 2000, Image Vis. Comput..

[46]  Chris Burbridge,et al.  Bootstrapping Probabilistic Models of Qualitative Spatial Relations for Active Visual Object Search , 2014, AAAI Spring Symposia.

[47]  S. Kosslyn,et al.  The case for mental imagery , 2006 .

[48]  Anne Kuefer,et al.  What Is Mathematics An Elementary Approach To Ideas And Methods , 2016 .

[49]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[50]  Michael J. Witbrock,et al.  An Introduction to the Syntax and Content of Cyc , 2006, AAAI Spring Symposium: Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering.

[51]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[52]  Marjorie Skubic,et al.  Qualitative analysis of sketched route maps: translating a sketch into linguistic descriptions , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[53]  Anthony G. Cohn,et al.  Image Retrieval through Qualitative Representations over Semantic Features , 2007, BMVC.

[54]  Luca Iocchi,et al.  RoboCup@Home: Results in Benchmarking Domestic Service Robots , 2009, RoboCup.

[55]  Xin Wang,et al.  A Study on how Humans Describe Relative Positions of Image Objects , 2008, SDH.

[56]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[57]  Juan Pedro Bandera-Rubio,et al.  Multi-feature Bottom-up Processing and Top-down Selection for an Object-based Visual Attention Model , 2013 .

[58]  Joana Hois,et al.  A belief-based architecture for scene analysis: From sensorimotor features to knowledge and ontology , 2009, Fuzzy Sets Syst..

[59]  Rami Al-Salman,et al.  Qualitative Spatial Query Processing: Towards Cognitive Geographic Information Systems , 2014 .

[60]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[61]  Antonio Torralba,et al.  Recognizing indoor scenes , 2009, CVPR.

[62]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[63]  Johan van Benthem,et al.  What is Spatial Logic? , 2007, Handbook of Spatial Logics.

[64]  Alessandro Saffiotti,et al.  Planning Domain + Execution Semantics: A Way Towards Robust Execution? , 2014, AAAI Spring Symposia.

[65]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[66]  Giorgio De Felice,et al.  Reasoning with Mixed Qualitative-Quantitative Representations of Spatial Knowledge , 2013 .

[67]  Luis González Abril,et al.  Título artículo / Títol article : Measures of Similarity between Qualitative Descriptions of Shape , Colour and Size Applied to Mosaic Assembling , 2014 .

[68]  Selim Aksoy,et al.  SCENE MODELING AND IMAGE MINING WITH A VISUAL GRAMMAR , 2002 .

[69]  Daniel Hernández,et al.  Relative representation of spatial knowledge: the 2-D case , 1990, Forschungsberichte, TU Munich.

[70]  Luca Iocchi,et al.  Benchmarking Intelligent Service Robots through Scientific Competitions: The RoboCup@Home Approach , 2013, AAAI Spring Symposium: Designing Intelligent Robots.